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Symmetry

Plane of symmetry Bilateral symmetryRotational symmetry
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Translational symmetry

Animals produce
symmetrical objects

Symmetry in the manSymmetry in the manSymmetry in the manSymmetry in the man----made creationsmade creationsmade creationsmade creations
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Augost 19, 2008

«The dominating idea in this application of
mathematics to physics is that the equations
representing the laws of motion should be of a
simple form. The whole success of the scheme is
due to the fact that equations of simple form do
seem to work....

We now see that we have to change the principle of
simplicity into a principle of mathematical beauty
… It often happens that the requirements of
simplicity and of beauty are the same, but where
they clash the latter must take precedence.»

Paul Dirac
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Symmetry implies simplicitySymmetry implies simplicitySymmetry implies simplicitySymmetry implies simplicity

TheTheTheThe conservationconservationconservationconservation ofofofof energyenergyenergyenergy ==== uniformityuniformityuniformityuniformity ofofofof timetimetimetime....

TheTheTheThe conservationconservationconservationconservation ofofofof linearlinearlinearlinear momentummomentummomentummomentum ==== homogeneityhomogeneityhomogeneityhomogeneity ofofofof spacespacespacespace....

The conservation of angular momentum = isotropy of spaceThe conservation of angular momentum = isotropy of spaceThe conservation of angular momentum = isotropy of spaceThe conservation of angular momentum = isotropy of space....

Conservation laws and symmetries formulations:

Teorema de Noether

The quantum state of a system is labeled by the symmetry of its Hamiltonian

Any symmetry of a physical system is associated with a 
physical quantity that is conserved in this system

The set of the numerical values corresponding to compatible observables 
(invariants) defines the quantum state of a system

This theorem allows to derive the conserved physical quantity from the condition 

of invariance which defines the symmetry. It also works in the opposite direction.

Example: (a) the invariance of physical systems with respect to spatial translation 
(translational symmetry) implies the conservation of linear momentum. (b) If the 
momentum  of a system is conserved, this system must be invariant under spatial 
translations.
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«If you look at the history of 20th century

physics, you will find that the symmetry concept
has emerged as a most fundamental theme,
occupying center stage in today's theoretical
physics. We cannot tell what the 21st century
will bring to us but I feel safe to say that for the
next ten or twenty years many theoretical
physicists will continue to try variations on the
fundamental theme of symmetry at the very
foundation of our theoretical understanding of

the structure of the physical universe.»

C. N. Yang, Chinese J. Phys. 32 (1994) 1437

Nobel de Física 1957
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Exact and approximate symmetries

Most of the symmetries of physics (and art) are not exact but
are approximate ... Despite the fact that most of the dynamic
symmetries are not exact, they provide us with the best tool we
have for understanding complex structures.

B.G. Wybourne

«What an imperfect word it
would be if every symmetry was
perfect.»

Francesco Iachello
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The Physics comes in the process of breaking the symmetry

B.G. Wybourne 
Ninth Intl. School of Condensed Matter Physics, 

Bialowieza 1995

Outline of the course: Linear representations of groups. 
Irreducible representations. Character tables.
Basis sets for a group representation: Normal modes. 
Hybrid orbitals. Molecular orbitals.
Permutation group.  Continuous Groups.
Products and powers of representations. 
Selection rules. Electronic terms. Multipoles.
Dynamic groups... 

POINT SYMMETRY

Unit 1: Linear Representations of a Group

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry
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The transformations that leave invariant a system (symmetries) form a group.

A group is a set, G, together with a composition law “•”  fulfilling:

•Closure: ∀ a, b ∈ G,  a • b∈ G

•Associative:∀ a, b, c ∈ G, (a • b) • c = a • (b • c)

•Identity: ∀ a ∈ G, ∃ e ∈ G  /   e • a = a • e = a

•Inverse:∀ a ∈ G, ∃ b ∈ G  / a • b = b • a = e
we say b = a-1

Group of transformations

An Abelian or commutative  group is a group (G, •) additionally  fulfilling:

•Commutative: ∀ a, b ∈ G,  a • b = b • a 
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The group structure can be grasped in the group or Cayley table.

Group Table

Example.

Caution!  Left first and right then, the product may be not commutative

C3v group table
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Subgroups

Subgroup:  A subset H ⊂⊂⊂⊂ G is called a subgroup of (G, •) if  (H, •) is a group.

C3v proper subgroups:

{E}, {E, C3
1,C3

2}, {E, σσσσ1 , σσσσ2 , σσσσ3 }

H is a propersubgroup of a group G if H ≠ G. 
H is a trivial subgroup of a group G if H = {E}
G is sometimes called an overgroup  (or supergroup) of H

Homomorphism (for pedestrian)

Homomorphismis like a movie:

you cannot see all but you can grasp what is going on… 
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Group isomorphism. Homomorphism

Two groups with the same Cayley table are isomorphic

Homomorphism: is a map h: G→H between two groups (G,*) and (H, •) preserving 
the multiplication law, i.e., fulfilling: h(u*v) = h(u) • h(v) 

Example:                                and                 are homomorphous  

The mapping:                                                           preserves the 
multiplication law: 

Isomorphism: is an isomorphic or bijective homomorphism

Conjugate elements and equivalence classes

Two elements a and b of G are called conjugate if ∃ g ∈ G: g a g-1=b

•Reflexivity: a ~ a

•Symmetry: if a ~ b,  then b ~ a

proof:  a ~ b ô g a g-1=b ; ô g-1g a g-1g = a = g-1b g = c b c-1 ô b ~ a   

•Transitivity: if a ~ b and b ~ c then a ~ c

Conjugacy makes a partition of G into equivalence classes.

•Every element of class is a member of this and only this class. 

•Identity forms a class by himself  

•All classes of Abelian groups contains only an element  

proof:

Conjugacy  “~ “  is an equivalence relation, i.e.
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C3v classes

C3v contains three equivalence classes: E, 2C3, 2σσσσ

correspondence

correspondences:

e.g.

Note that if 1, 2, 3 label the vectors instead of the vertices of the triangle, the same 
matrices that transform the vertices transform the vectors

Linear representation of a group
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Linear representations

A change in basis of the vector space leads the matrices representing the 
symmetry operations to acquire a block form.

But ... what is a group representation? 

What is to represent a group?

To represent a group is to establish a homomorphism between a
group G and a group of operators T(G). These operators T(G) acquire
matrix form when we represent them in a n-dimensional linearspace V.

Warning! The set of matrices T not necessarily form a group.
(different elements of G may have the same matrix representation T).
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Equivalent representations of a group

Reducible and irreducible representations

In general:
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Orthogonal basis sets

Changing the basis set

The basis sets transformation U is unitary

We will chose orthogonal basis sets. We will always chose unitary representations

Unitary representations

Reducible and Irreducible Representations
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Decomposition of a reducible representation

A representationΓΓΓΓ (f) can bereducedor decomposed into asum of representations
if there exist a non-singular matrix A that turns everyΓΓΓΓ (f) matrix in an equivalent
block matrix form, i.e.,

This equivalence transformationreducesΓΓΓΓ (f) into a direct sumof representations
ΓΓΓΓ(a) , ΓΓΓΓ(b)… ΓΓΓΓ(z ):

ΓΓΓΓ (f)=ΓΓΓΓ(a)∆ ΓΓΓΓ(b)∆ … ∆ ΓΓΓΓ(z )

The representations that cannot by simplified this way are referred to as
irreducible representations (irreps)

Character of a representation

How can we characterize equivalent representations?

The character of two equivalent representations is the same

(The characterχχχχµµµµ(R) is trace of the representationµµµµ of the symmetry element R)

Proof:

Equivalent transformation: Character:

Corollary: The conjugate elements (those in the same class) have 
the same character.

Hint: the trace of a matrix is invariant under equivalence transformations
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Character Tables

The decomposition of a group into non-equivalent irreps and into equivalence 
classes is unique. 

Character table of a group: is a table containing all characters of non-
equivalent irreps of a group, where the irreps (Γ Γ Γ Γ i) label the rows and the 
classes (Cj ) the columns.

Point group Symmetry operations

Characters
+1 symmetric behavior

-1 antisymmetricMülliken symbols

Each row is an irreducible representation

C2v Character Table
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x, y, z
Symmetry of translations (p orbitals)

Rx, Ry, Rz: rotations

Classes of operations

dxy, dxz, dyz, as xy, xz, yz

dx
2
- y

2 behaves as x2 – y2

dz
2 behaves as 2z2 - (x2 + y2)

px, py, pz behave as x, y, z

s behaves as x2 + y2 + z2

C3v Character Table

The Great Orthogonality Theorem

Let ΓΓΓΓ(f) and ΓΓΓΓ(g) (R) any two irreps of a group G of h elements, then:

where the sum is extended to all group elements and df is the dimension of ΓΓΓΓ(f) .

Using unitary representation:

Corollary: The Little Orthogonality Theorem (row orthogonality)

where ηηηηi is the dimension of i-th class.
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Column orthogonality in the character table:

The Great Orthogonality Theorem (cont.)

Square in a row of the character table:

012

111

111

32

3

2

1

33

−Γ
−Γ

Γ
vv CEC σ

This allows an automatic building
of the character tables

etc. (see e.g. Bishop 7.7)

Another relevant corollary: Decomposition of a reducible representation
as a sum of irreps:

• One-dimensional irreducible representations are called A or B.

• The difference between A and B is that the character for a rotation Cn 
is always 1 for A and -1 for B.

• The subscripts 1, 2, 3 etc. are arbitrary labels.

• Subscripts g and u stands for gerade and ungerade, meaning 
symmetric or antisymmetric with respect to inversion.

• Superscripts ’ and ’’ denotes symmetry or antisymmetry with respect to 
reflection through a horizontal mirror plane.

• Two-dimensional irreducible representations are called E.

• Three-dimensional irreducible representations are called T (F).

Mulliken notation
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In some groups there are couples of one-dimensional irreps complex 
conjugate of each other . Sometimes they are represented together as a 
two-dimensional  irrep.

The character table of C•v and D•h employ the angular momentum 
notation:  

Example: The complete C4v character table

)]3(),3([),,(),(),(),,(00202

11111

)(11111

11111

,11111

222

222222
2

2222
1

2

2222
1

244

yxyyxxyzxzyzxzRRyxE

xyzxyB

yxzyxB

RA

zzyxzA

CCEC

yx

z

dvv

−−−
−−

−−−−
−−

+
σσ

These are basis functions for the irreducible representations. They 
have the same symmetry properties as the atomic orbitals with the 
same names.
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The functions space as a basis set  for irreps

How can we do a 45 degrees rotation on the sine function? 

R45º ?

The functions space as a basis set  for irreps

Rotating a function: 

We define rotated function to the function which looks like the original when the 
original one is referred to the coordinates axesthat have been backward rotated:
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f(x,y) = x2y g(x,y) = xy2

f(x,y) = x2y

Op/2 f(x,y) = f(R-p/2 (x,y))=f(-y,x)=(-y)2(x) = y2x

Rotating the functions vs. rotating its argument

C4v ={E,2C4(z), C2(z),2σv, 2σd} acting on f(x,y) = x2y 

Some examples of functions as basis for irreps 
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C4v acting on g(x,y) = y2x 

The p atomic orbitals as a basis set for C4v

The coordinates ( r, θ ) are invariant under C4v

The pz by itself forms a basis set for a fully 

symmetric one-dimensional irrep of C4v

C4v acting on the variable j::::
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The p atomic orbitals as a basis set for C4v

The p atomic orbitals as a basis set for C4v

{x,y} and {px,py} have same 

transformation properties
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Symmetry of Atomic Orbitals

Angular part of atomic orbitals in Cartesian coordinates
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An axial vectoris a quantity that transforms like a vector under aproper
rotation, but gains an additional sign flip under animproper rotation
such as areflection.

Axial vectors as basis for irreps

Axial vectors are represented as a cross product of two polar vectors: 

The components of an axial vector                        are:

Axial vectors as basis for irreps

C3v ={E,2C3(z), 3σσσσv } acting on Rz=PxQy-PyQx, 

We assume that P and Q are polar vectors, i.e., transform like r=(x,y,z)

The obtained characters are: χχχχµµµµ(E) = 1, χχχχµµµµ(C3) = 1, χχχχµµµµ(σσσσv ) = −−−−1, 
corresponding to the irrep A2.  
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An example: rotation of the 2D kinetic energy operator:

Let’s consider a rotation θ [from (α,β) to (x,y)]

Operators as basis for irreps

The Hamiltonian is invariant ifH(αααα,β β β β )=H ( x, y )

Alternatively

if

The Hamiltonian is invariant in case it commute with the symmetry transformation

Example: 

if                                 where                                        then, Lz is a constant of motion
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Invariant vector spaces: some remarks

In terms of vector and linear spaces, reducing a representation as a sum of irreps

is equivalent to determine the subspaces of the vector space spanning the

reducible representation which are invariant under the group transformations.

Invariant vector subspace means that the action of the group on the subspace is

closed, i.e., the action of every symmetry element of the group upon any vector of

this subspace yields another vector in it.

The representation of a group on a vector space V is irreducible if V does not

contain any (non-trivial) invariant space under the group transformations.

Otherwise, the representation is reducible.

POINT SYMMETRY

Unit 2: Normal modes as basis sets for irreps.

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry
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Normal Modes: one-dimensional diatomic molecule 

mx=my=1 k=1

r = y - x req=0

Orthogonal change of coordinates

Normal modes: Orthogonal coordinates diagonalizing the V matrix:

The normal modes associated to a zero force constant that do not change the position of

the center of mass are referred to as rotations. Those associated to a zero force constant

that change the position of the center of mass are referred to as translations. All the rest

of normal modes are associated to non-zero force constants and are called vibrations.
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Normal Modes and symmetry

The potential energy is a scalar → invariant under symmetry transformations

In terms of normal modes: 

Theorem: Two normal modes associated to different force constants can not belong 

to the same irrep.

Equation valid for all αi. In particular, it is valid for αi = 0 when i ≠0 

D is a unitary matrix:

Against the hypothesis i ≠ 0

ααααi and αααα0 do not mix

belong to basis of different representations

If we ignore the possible occurrence of accidental degeneration, we
can assume that the group representations of the normal modes are
irreducible. Why?

It must be point out that two normal modes associated to the same
force constant could not be mixed by any of the symmetry
transformations of the system (accidental degeneracy). However, it is
almost impossible finding out an exact accidental degeneracy.

If k1 = k0, then {αααα1,αααα0} can be mixed by a symmetry transformation,

i.e., {a1,a0} belong to the same basis of a multidimensional group
representation (intrinsic degeneration)
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Symmetry transformations upon Cartesian coordinates

Normal Modes: el methane CH4 case 

Normal Modes

Symmetry ν(cm-1)
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A1

Methane Normal Modes

E

T1

T2

POINT SYMMETRY

Unit 3: Direct product of representations.

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry
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Direct product of representations

Let        belonging to the irrep “i”  and          to the irrep “j”. 

Then, we build up the Cartesian  products:

We unify indexes by defining:

Direct product of representations

Then, from two representations Γi and Γj of a group G with dimensions df and

dg, respectively, we have defined the so-called direct or Cartesian product of

them, Γi≈j = Γi ≈ Γj, which is a (di x dj) dimensional representation with matrix

elements:

In this equation (ik) labels a single index ranging from one up to df  x dg, as also (jl) does. 

Example:

∀ � ∈ �   [��≈	 (�)](
� ),(�� ) = �
�� (�)���
	 (�)      
, � = 1. . . ��   �, � = 1. . . �	  

��≈	 (�) = ��(�)�	 (�) 

The product yields a new, a priori reducible representation with characters:
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Teorem: The decomposition of the product of two irreps

contains the representation totally symmetric (A1) only if both

are identical (except for conjugation, in case of complex irreps)

Proof:      Just consider the theorem of  the orthogonality of  characters

A vector         belongs or is transformed according to the i-th basis of the irrep         

if " R œ G:

The set of vectors                                         form a basis.

Teorem:  If                      belong to bases of  different irreps, they are orthogonal

Prior to prove this theorem, we are must clarify what does “a symmetry

transformation acting upon an integral” means (an integral is a just a real or

complex number...).

Eigenvectors of an irreducible representation
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Vanishing Integrals

Consider the action of a rotation on the integral

Rotate an integral must mean calculating the

integral once the function is rotated in the

opposite direction.

Teorema:  If           is not  a basis for the fully symmetric representation, then  I=0

Prof:

An integral (which is a number) must be

invariant under any symmetry transformation.

Vanishing Integrals  (cont.)

Teorem:  if                       belong to bases of  different irreps, they are orthogonal

Proof: Just consider that if the irreps are different, the decomposition of their

product does not contain the fully symmetric irrep and hence the integral must

be zero.



7/1/2013

36

Spectroscopic selection rules

Selection rules of diatomic molecules in microwaves

Absorption

Raman

PLANAR

Vibrational (IR) spectra

BF3 is a planar (D3h) or a pyramidal (C3v) molecule? 

Strong

Strong

Strong

Medium

pyramidal (C3v)

planar (D3h) 

Dipole

moment Polarizability
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POINT SYMMETRY

Unit 4: Atomic and molecular orbitals.

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry

Projection and shift operators

Action of the symmetry operation R 
on the µµµµ-th function of the irrep  ΓΓΓΓ

Then, we define:

Some manipulation
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Híbrid Orbitals(sp2)
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orthogonalitzation:

Using Projectors (only characters are now needed):

Non-orthogonality problem:

Molecular Orbitals: the water molecule case
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Polynomial equation of degree 6 → x = ±±±±1, ±±±±1, ±±±±2.
Then, we should find the associated eigenvectors 

The set of 6 AOs 2pz form a basis for a reducible 
representation of the D6h group and also of its 
subgroups (D6, C6h, C6)

We can calculate the D6 symmetry adapted basis set by means of projectors:

Molecular Orbitals: the benzene case

Problem: the projections upon multidimensional irreps are not 
automatically calculated orthogonal

Symmetric Orthogonalitzation
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H =

The C6 group is Abelian

H =
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POINT SYMMETRY

Unit 5: The symmetric or permutation group.

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry

Symmetric group of  permutations

Example 2:

23144321 
4132

1234
xxxxxxxx =








)142()3)(142( 

4132

1234
==









23144321 )142( xxxxxxxx =

4
3

2
232

2
1 2 xxxxxA += 4

3
2
131

2
2 2)12( xxxxxA +=

Example 1:

Item 1. Disjoint cycles commute

)123)(45(
54231

45123

23154

12345
)45)(123( =








=







=

Item 2. Cyclic permutation, e.g. (123)=(231)=(312) 

)231(
312

231

231

123
)123( =








=







=
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Item 3. decomposition of a cycle as product of transpositions (ab)

132321 )123( xxxxxx =

132231321 )12( )23)(12( xxxxxxxxx ==
 )23( )12( )123( =

Caution to the ordering!

321213312321 )132()23( )12)(23( xxxxxxxxxxxx ===

)132()321()21)(32( )12)(23( ===

Item 4. The product of two cycles in reverse order yields the neutral element

ee ==== )21)(12()21()12()21)(32)(23)(12( )321)(123(

321321312321  )12()21)(12( xxxexxxxxxxxx ===

Item5. Products of two cycles with repeated elements

)1243()243)(12( )324)(12( ==

Definition. A permutation is even (odd) if the number of transpositions it 
contains is even (odd)

tions) transposi(2even  és )46)(24((246)

tions) transposi(3 odd és  7)(12)(23)(6  (123)(67)

tions) transposi(zeroeven  is   

====
====

e

tptqpq  ~ 1−=⇔

Conjugation relation and equivalence classes

))(( ~~,~:tytransitivi

)(  ~~:symmetry

)( ~ :yreflexivit

11111

1111

1

crrcststcststbttacacbba

bbtttttatbttaabba

aeaeaeeaeaaa

−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−

−−−−

================⇒⇒⇒⇒

========⇔⇔⇔⇔====⇔⇔⇔⇔

================
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Example:  S3 (3 classes):

• ξ1 = { e } identity

• ξ2 = { (12), (23), (31)  } 2-cycles

• ξ3 = { (123), (321)  } 3-cycles

Permutations with the same cyclic structure belong to the same class

Number of elements in a class

Partitions and classes

Label of class (νννν) o [λλλλ]:

ExampleS4

partitions of 4:           4 =  4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1

classes of 4:                 [4]    [3 1] [22]     [2 12]     [14]

classes of 4:                  (14)    (2 12) (22)     (3 1)        e
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ExampleS4 partitions of 4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1

Partition Cycles structure Cardinal class Example

Classes and Young Tableaux

ExampleS4

Young Tableaux Dimension

even even even oddodd

conjugates

selfconjugate

Ex. Partition
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Caracter Tables 

We build them by using the orthogonality theorem, as with the point symmetry groups

Please note:

Conjugates

Selfconjugate

Theorem

Remainder:

Proof:

The decomposition of the tensorial product of two irreps of the symmetric 
group contains the fully antisymmetric irrep  [1n] if and only if the irreps 
in the product are dual of each other. In this case, the multiplicity is 1, 
i.e., the [1n] irrep appears only once.



7/1/2013

47

Spin functions:

Orbital functions: ( ijk represents ):

Total wave functions:

Obtaining spin-adapted functions












−−
−=








−









−
==

2
1

2
3

2
3

2
1

2
1

2
3

2
3

2
1

10

01
)23)(12()123(












−
−−

=










−−
−

== −

2
1

2
3

2
3

2
1

2
1

2
3

2
3

2
1

1)123()132(

t












−
−−

==
2
1

2
3

2
3

2
1

)132)(12()13(

(using shift operators)
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POINT SYMMETRY

Unit 6: Symmetrized powers of group representations

Josep Planelles
Dpt. Química Física i Analítica

Universitat Jaume I

Symmetry and Structure in Chemistry

Powers of irreps An example:

symmetric

antisymmetric
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The basis set of the second power of an irreducible representation can always be

decomposed as a direct sum of two subspaces stable (invariant) under the S2

permutation symmetry (symmetric and antisymmetric). Each of these subspaces can

in turn be decomposed into subspaces stable under the point symmetry group.

In general: �
 �
[�](�) = ℓ[�]

�! � �[�](�) �� � ��� (��)
�

�=1�∈��

 

n    the power 

[λ]   irrep of Sn 

ℓ[�]   dimension of [λ] 

C   class of Sn 

mc   number of elements of class C 

�[�](�)  character of the irrep [λ]of Sn 

�(�)  character of the irrep µ of the point group 

νi   number of i-elements cycles of C 

J. Planelles  and C. Zicovich-Wilson, 

Int. J. Quant. Chem. 47(1993) 319.
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Boyle Tables(Int.J.Quantum Chem. 6 (1972) 725-746 ):

Boyle Tables(cont): Terms of  electronic atomic configurations

Terms of  p3 configuration Terms of  d3 configuration
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Boyle Tables (cont): Terms of electronic molecular configurations

configuration

configuration

subconfiguration

subconfiguration

Terms in the configuration
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configuration

configuration

Correlation diagrams (Tanabe-Sugano)d2 configuration
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d2 configuration

Tanabe–Sugano diagram for the Ni(II) 3d8 in octahedral CF. 
vertical dashed line indicates the CF strength for MgO:Ni2+.

N. Mironova-Ulmanea,M.G. Brikb, I. Sildos
Journal of Luminescence 135 (2013) 74–78
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V3+ (d2 configuration) ion 
in α-ZnAl2S4 host crystal.

S. Anghela, G. Boulonb,L. Kulyuka, K. Sushkevichc
Physica B: Condensed Matter 406 (2011) 4600–4603

Octahedral Ni(II) complex (d8) by Robert J. Lancashire, 
http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TShelp.html

V3+ in LiAlO2 and LiGaO2 are indicated by vertical lines
S. Kück and P. Jander,  Optical Materials, 13 (1999) 299–310
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The group of rotations around an axis: C• o  SO(2)

Remember:

This group has infinite number of elements, φ œ (0, 2π). It is a commutative

group, i.e. has an infinite number of classes. Then, its character table cannot

be derived from the orthogonality theorems, used for finite groups.
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Finite rotation : with

Remember:

The eigenfunctions of        are eigenfunctions of 

→The eigenfunctions of Lz are bases for the irreps of the SO(2) group.

The line group SO(2) or C•:
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Since                             the rotation operator around the z axis (defined by the 

vector k) is: 

The symmetry group of the sphere K or SO(3) 
(special orthogonal 3D group)

Finite rotation around an axis defined by the vector u:

The sphere group K includes all rotations around all sphere symmetry axes.

K is not a commutative group. Rotations of the same angle around different axes 
belong to the same class.

Since rotations cannot change the length of the angular momentum 
(since L±±±± =Lx ±±±± i Ly and |LM> is an eigenfunciton of Lz). 

Then, the complete set of  functions {|LM>, M=-L,...,L}  are basis for the irreps of K

The symmetry group of the sphere K or SO(3) 
(special orthogonal 3D group)
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The same than that  of angular momentum

Decomposition of the direct product of representations 

Symmetric and antisymmetric part

Group of the CO molecule: C•v

In a similar way to:

We have:
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Alternatively:

Decomposition of the direct product of representations 
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Grup de translacions

Translation operator:

Since nŒ Z the translation group has infinite number of elements.

It is an abelian group                                                                 

Then, it has an infinite numbers of one-dimensional  irreps

Linear momentum as generator of translations

Proof:

The eigenfunctions of the linear momentum are also eigenfunctions of the
translation operator. Then, we may employ the eigenfunctions exp(ikx) of
the linear momentum to calculate the character table.

The Bloch functions                            
are also bases of the irreps of this group.

The eigenvalue k is not bounded. However, the eigenfunctions associated with 
k’=k+2ππππm/a, mŒ Z are equivalent (have the same characters).

The fully symmetric A1 irrep corresponds to k = 0. Therefore, it is convenient to 
definekŒ (-ππππ/a, ππππ/a) This region is called the First Brillouin zone 
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Spin functions and double groups

Let’s consider C2:

Since the eigenfunctions of Lz are bases of the irreps of C¶ they must also be bases 

of the irreps of C2

The eigenfunctions with even “m” are basis for the irrep A, those of  odd “m” are 

basis of  the irrep B.



7/1/2013

62

We define                                  and complete the group by carrying out all the products:

Consider the action of C2 on the function f(q ) = Exp(-i q /2 )

The one-dimensional Γ Γ Γ Γ representation is obviously not reducible, but it is neither A nor B!

The paradox comes from the fact that when acting on these functions

The resulting group is abelian and it is isomorphic to C4

The abelian group obtained,  isomorphic to C4, is referred to as double group of C2 (C2*)

It is immediate to check that they are basis of the irreps Γ1, Γ2, Γ3 and Γ4, respectively.

Furthermore, if we remove Q and Q≈C2 (and therefore we remove Γ3 and Γ4), the

functions z and x, basis of Γ1 and Γ2, become basis of A and B of the group C2, as we

already knew.

Why are we interested in building up double groups? Because like the functions

e± i θ /2, the spin functions flip the sign if we rotate them an angle 2π.

Consider the action of this group on the functions z, x, e-iθ/2 and eiθ/2.
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Summarizing:  R(θ+2π)=R(θ)

If f(θ) ≠ f(θ+2π)  but   f(q) ≠ f(θ +2πm)

we say that f(θ) is m-evaluated.

The multi-evaluated functions cannot be used as basis to represent a 

group because OR f(θ) ≠ f(R-1θ).

The multi-evaluated representations cannot be ignored because they 

are important in Physics! (e.g. the spin functions)

The strategy followed to build C2* shows that we always can construct a

group G* with all representations single-evaluated starting from a group G

having multi-evaluated representations.

Every irrep of G (single- or multi-evaluated) is single-evaluated in G*.

The orthogonality theorems are applicable to double groups G*
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System

Symmetry Group Dynamic Group

Linear transformation of the 
states which commutes with 
the Hamiltonian:  [H,G]=0

Dynamic Group   … Degeneracy Group   … Symmetry Group

e.g. The Heisenberg group for the 
harmonic oscillator and the 
SO(4,2) for the hydrogen atom

Group that contains the whole 
energy spectrum as a basis of 
a single irrep:

Degeneracy Group

The degenerate states belong 
to the same irrep.

The ladder operators reach 
every eigenstate 

The ladder operators reach 
every  eigenstate within the 
degeneration 

Dynamic groups: An example

The Heisenberg group and the harmonic oscillator

Heisenberg algebra

Elements: {1, p, q}

Alternatively:

Commutations:
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HO Hamiltonian:

Group element:

The Heisenberg group as a dynamic group:

The SO(4,2) as dynamic group for the Hydrogen atom
B.G. Wybourne, Classical groups for physicists, cap 21. 

Degeneracy groups: An example

The SO(4) or R(4) group and the Hydrogen atom

The SO(4) Group

3D rotation (x,y,z)

4D rotation (x,y,z,t)

Commutations
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Define:

Angular momentum algebra BBBB1

Angular momentum algebra B’B’B’B’1

DDDD2 = BBBB1≈ B’B’B’B’1

{Ji} and {Kj} span two disjoint  subalgebras ([Ji, Kj]=0)

We define (analogy with angular momentum algebra)

The associated Casimir operators (L2 analog.)

Casimir operators acting upon functions:

Define symmetric anti-symmetric part:

Degeneracy:
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Lowering symmetry:  SO(4) î SO(3)

Is SO(4) the degeneration group of the Hydrogen atom?

Hydrogen  Hamiltonian:

Invariants:

We define:

In front of the subspace
Ai, Bi behaves like in SO(4) (same commutation rules)
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Casimir operators :

We have:

Eigenvalues de C :

degeneration:

Coordinate representation

Spherical coordinates are naturally adapted to SO(3)
SO(4) is more easily exhibited in parabolic coordinates:

Schrodinger equation in parabolic coordinates:

From above, the basic algebra operators:

From them we defined:

And the creators and annihilators:
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L and R can be expressed s a function of  x, y, z coordinates. 
So, can be expressed as a function of parabolic coordinates

Torres et al, Rev. Mex. Fis. 54 (2008) 454

They act upon the states:

In particular:

etc.
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Irreducible tensor operators

The character of a physical magnitude  and its associated quantum mechanical 
operator is defined by its rotational properties

Scalar and scalar operator: 

A quantity is called scalar if it is invariant under all rotations. 

It is basis of the irreducible D0 representation of the rotation group.

Examples: mass, length, energy … and every scalar product of two polar vectors

Generators of the rotational group: {Jz, J±±±±}

Every rotation

If an operator commutes with {Jz, J±±±±} is an invariant under rotations

Vector (polar vector) and vector operator

A vector V and a vector operator V have magnitude and direction. 

They have components and behave as the vector position r and like r form a 
basis of the irrep. D1.

We may use Cartesian (Vx,Vy,Vz) or spherical (V1,V0,V-1) coordinates.

Spherical coordinates are invariants under rotations generated by the 
associated generator: [Jz,V0]=[J+,V+1]=[J -,V-1]=0

We may consider the full sphere group. Then,  we have two possible representations:  
DJ →DJg and DJu

Scalars are invariants, then they are basis of D0g

Polar vector change its sign with inversion, , then they are basis of D1u
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Axial vector and Axial vector operator: 

An axial vector is invariant under inversion.

Examples: Magnetic field, angular momentum, etc.

We may see them as a cross product of two polar vectors: L = r x p

They for basis for the irrep. D1g. 

Actually, they are second order zero trace anti-symmetric tensors

Peudoscalar and pseudoscalar operator: 

A pseudoscalar  change its sign under inversion and it is invariant under rotations.

It is then basis of the irreducible D0u.

We may see them as a scalar product of a polar times an axial vector.

Example: magnetic flux : ΦΦΦΦ = B · S

Spherical tensor with 2ω +12ω +12ω +12ω +1 components operator

It forms a base for the irrep. Dωωωω

Then, its component transforms  into a linear combination of themselves:

Second order Cartesian tensors can be built as direct product of two polar vectors, 
then they form a basis for the reducible representation: 

As with vectors, we may use Cartesian, Txy, or spherical, Tm, coordinates.

Rotations transforms Txy as they transforms the polynomial xy:

Then, we may consider the Cartesian tensor as a sum of three spherical tensors
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Decomposition of a cartessian tensor into sum of spherical tensors

D0g→The trace                                                            is this invariant. 

D1g→ We should extract a traceless anti-symmetrictensor

D2g→ We form a traceless symmetricsecond order tensor

Alternatively we may choose the most common basis for D2g

Example 



7/1/2013

73

Building a secon order tensor as a product of polar vectors in spherical coordinates

Example 1
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Example 2

Cartesian Spherical
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Addendum

The transformation property 

is equivalent to the fulfillment of the commutations:

Immediate to be checked  if the tensor is the set of the  2j+1 spherical harmonics 
associated to J 

General proof  related to the fact that : {Jz, J±±±±} are the generators of any possible 
rotation. (details e.g. Joshi chapter 6)
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Addendum 2Wigner-Eckart Theorem

(details e.g. Joshi chapter 6)

where 

Corollary

?
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Multipole expansion of the electric potential

Multipole expansion for the potential of a finite static charge distribution

The interaction energy:

Energy associated to a static charge distribution and a potential acting on it:

Assume r0 as coordinate origin and  consider a Taylor expansion of the potential:

The moments of a statistical distribution f(x) are defined as:

µµµµ0 = 1, µµµµ1 is the average, µµµµ2 the variance, etc.

By analogy we define the moments of  a static charge distribution:

By definition all these moments are symmetric, e.g.  Qxy=Qyx , Rxyy=Ryxy
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Laplace equation 

Rewriting Laplace equation 

Third term in the above equation

Laplace equation though allows the following rewriting of the higher moments:

They are traceless tensors:

Laplace equation allows a convenient redefinition of these moments. 

Monopole and dipole remain as they are. 

etc.
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The interaction energy:

Dependence of electric multipole moments on origin

In general, electric multipole moments beyond the monopole depend on the choice 
of origin.

The dipole moment is independent of an arbitrary shift of origin if the monopole
is zero:

The quadrupole moment is independent of an arbitrary shift of origin if the dipole is zero.

The leading non-vanishing electric multipole moment is independent of the choice of 
origin of coordinates.
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Multipole symmetry

Multipole moments are symmetric traceless tensors. Concerning inversion , like 
polynomials, odd multipoles are ungerade (e.g. dipole) while even multipoles are 
gerade (e.g. quadrupole).

Monopole moment  (total charge) is an scalar, invariant under every symmetry 
transformation. Then it forms a basis for the irrep. D0g.

Dipole moment transforms as the position vector r, then its component form a basis 
for the D1u irrep.

Quadrupole moment may be viewed as a  r* r direct product. In particular the 
symmetric part of the direct product D1u ƒ D1u (since it is symmetric with respect to 
the indexes exchange):

Since quadrupole is traceless, it does not contains nonzero D0g invariant 
component. Quadrupole has then D2g symmetry

Octupole moment may be viewed as the symmetric part of the direct product a  r* r*r. 

Octupole moment is traceless. 

Then, the octupole moment components form a basis for D3u

Since traces are obtained be contraction, the trace of a tensor is another tensor of the 
same dimensions (the Euclidean space) but of an order two units less. 

For example: octupole has three traces that are first order tensors, like the dipole 
moment. The remaining 7 components transforms as D3u
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Their zero traces, a tensor of an order two unit less, 
are zero. Then, hexadecupole has D4g symmetry. 

Hexadecupole                   corresponds to  

etc. 

To determine the irreps. in lower symmetries  of the components of the multiploles we 
consider the symmetry lowering from the full rotation group:

Polarizability

If the charge distribution is not static, it may be polarized (deformed) by the field.

Then, multipoles change with the field and its gradients:

Define polarizability and hyperpolarizabilities:
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By definition polarizability αααα and hyperpolarizabilities β,γβ,γβ,γβ,γ , etc are symmetric with
respect to the indexes exchange. Hyperpolarizabilities                           are symmetric 
with respect to index exchange within each subset of indexes. 

By definition they are not traceless tensors (e.g. always the field polarizes an atom, i.e. 
the D0g trace of αααα cannot be zero)

Symmetry

Polarizability αααα components form a basis set for  

The isotropic D0g trace of αααα is responsible for Rayleig dispersion.

The anisotropic D2g components of αααα are responsible for Raman dispersion

etc.

Other hyperpolarizabilities

The electric field F has D1u symmetry while its second derivative F’αβαβαβαβ is a traceless D2g 

tensor. Then, the symmetry of Aγ;αβγ;αβγ;αβγ;αβ must be:

Let’s consider 

Symmetry of the larger polarizabilities
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Theory of invariants

1. Perturbation theory becomes more complex for many-band 
models

2. Nobody calculate the huge amount of integrals 
involved

grup them and fit to experiment⇒

Alternative(simpler and deeper) to perturbation theory:

Determine the Hamiltonian H by symmetry
considerations

Theory of invariants (basic ideas)

2. H must be an invariant under point symmetry (Td ZnBl, D6h
wurtzite)

A·B is invariant (A1 symmetry) if A and B are of the same 
symmetry

e.g. (x, y, z) basis of T2 of Td: x·x+y·y+z·z = r2 basis of A1 of 
Td

1. Second order perturbation: H second order 
in k:

j
ji

iij kkMH ∑
≥

=
3
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Theory of invariants (machinery)

1. k basis of T2 2. ki kj basis of ][ 12122 TTEATT ⊕⊕⊕=⊗
3. Character Table:

{ }
{ }

)  ( 

,,

,2

1

2

22222

222
1

tensorsymmetrickkNOT

kkkkkkT

kkkkkE

kkkA

ji

zyzxyx

yxyxz

zyx

→

→

−−−→

++→ notation: 
elements of these 
basis:       .       

Γ
ik

4.Invariant: sum of 
invariants:

fitting parameter                                   
(not determined by 
symmetry)

Γ
Γ

Γ

Γ
Γ∑ ∑= i

i
i kNaH

)dim(

irrep

basis 
element

Machinery (cont.)
How can we determine the        matrices?Γ

iN

→ we can use symmetry-adapted  JiJj products

11221        ,    ),,( TTTTandTofbasisJJJ zyx ⊗⊗⊗⊗====⊗⊗⊗⊗

Example: 4-th band model:{ }>−>−>> 2/3,2/3|,2/1,2/3|,2/1,2/3|,2/3,2/3|
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Machinery (cont.)

Finally we build the Hamiltonian

Luttinger parameters: determined by fitting

We form the following invariants

Four band Hamiltonian:
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Exercise: Show that the 2-bands {|1/2,1/2>,|1/2,-1/2>} conduction band k·p Hamiltonian 
reads H= a k2 I, where I is the 2x2 unit matrix, k the modulus of the linear momentum and a
is a fitting parameter (that we cannot fix by symmetry considerations)

Hints: 1.
2. Angular momentum components in the ±1/2 basis: Si=1/2 σi, 

with

3. Character tables and basis of irreps

][ 1211122 TTEATTTT ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕====⊗⊗⊗⊗====⊗⊗⊗⊗

{{{{ }}}}
{{{{ }}}}
{{{{ }}}}yzzyxzzxxyyx

yzzyxzzxxyyx

yxyxz

zyx

kkkkkkkkkkkkT

kkkkkkkkkkkkT

kkkkkE

kkkA

'','',''

,,

,2

1

2

22222

222
1

−−−−−−−−−−−−→→→→

++++++++++++→→→→

−−−−−−−−−−−−→→→→

++++++++→→→→

Answer:

1. Disregard T1:                           

2. Disregard E: 

3. Disregard T2:

4. A1: 

0====−−−− ijji kkkk

{{{{ }}}}
{{{{ }}}}
{{{{ }}}}yzzyxzzxxyyx

yzzyxzzxxyyx

yxyxz

zyx

kkkkkkkkkkkkT

kkkkkkkkkkkkT

kkkkkE

kkkA

'','',''

,,

,2

1

2

22222

222
1

−−−−−−−−−−−−→→→→

++++++++++++→→→→

−−−−−−−−−−−−→→→→

++++++++→→→→

0====++++ ijji σσσσσσσσσσσσσσσσ

)2x2(222 I============ zyx σσσσσσσσσσσσ

2222 kkkk zyx ====++++++++→→→→
I 3222 ====++++++++→→→→ zyx σσσσσσσσσσσσ IH   2ka====a
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k·p Theory

How do we calculate realistic band diagrams?
Tight-binding
Pseudopotentials
k·p theory
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One-band Hamiltonian for the conduction band
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