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Abstract: A widely accepted bit of wisdom among Physicists is that symmetry
implies degeneracy, and the larger the symmetry, the larger the degeneracy. What works
forward ought to work backward (Newton’s Third Law): if the degeneracy is greater
than expected, the symmetry is greater than apparent.

- Taken from some book . . .



Chapter 1

To Lie or not to Lie
A first look into Lie Groups and Lie Algebras

1.1 Lie group: general concepts

I Lie groups are important objects in Mathematics, Physics, . . ., as they capture
two very important areas of mathematics: algebra and geometry.

I The algebraic properties of a Lie group originate in the axioms for a group:

F Definition: A set of gi, gj, gk, . . . (called group elements or group operations)
together with a combinatorial operation ◦ (called group multiplication) form
a group G if the following axioms are satisfied:

(i) Closure: if gi ∈ G, gj ∈ G, then gi ◦ gj ∈ G;

(ii) Associativity: gi, gj, gk ∈ G then (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk)
(iii) Identity: There is an operator e (the identity operator) with the prop-

erty that ∀gi ∈ G we get gi ◦ e = gi = e ◦ gi;
(iv) Inverse: every group operation gi has an inverse (called g−1

i ) with the
property gi ◦ g−1

i = e = g−1
i ◦ gi;

I The topological properties of the Lie group comes from the identification of
each element in the group with a point in some topological space: gi → g(x). In
other words, the index i depends on one or more continuous real variables.

I The topological space that parameterizes the elements in a Lie group is a manifold.
The Lie group is then seen as a smooth manifold, i.e. a differentiable manifold whose
product and inverse operations are functions smooth on the manifold.

F Manifold: Is a space that looks Euclidean on a small scale everywhere, but
can have a very different large scale topology.
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– For example

Manifold S1 :


Global: structure of a circle

Local: structure of a straigth line, R1

I The topological notions of the Lie group allow us to introduce the ideas of com-
pactness and noncompactness:

F Definition: A topological space T is compact if every open cover (set of open
sets Uα) has a finite subcover. Or, in other words, a space is compact if every
infinite sequence of points has a subsequence that converges to a point in the
space.

F Example: the sphere S2 is a compact space and the R2 plane is not compact.
The circle is compact and the hyperboloid is not compact.

I Compactness is an important topological property because it means that the
space is in some sense like a bounded, closed space. For Lie groups it is important
because all irreducible representations of a compact Lie group are finite dimensional
and can be constructed by rather simple means (tensor products).

I We will not go into more details in the topological aspects of Lie groups because
almost all of the Lie groups encountered in applications are matrix groups. This
effects and enormous simplification in our study of Lie groups. Almost all of what we
would like to learn about Lie groups can be determined by studying matrix groups.

I In terms of matrix groups we can define compactness as: A matrix Lie group G
is said to be compact if the following two conditions are satisfied

(1) If Am is any sequence of matrices in G, and Am converges to a matrix A, then
A is in G;

(2) There exists a constant C such that for all A ∈ G, |Aij| ≤ C for all 1 ≤ i, j ≤ n.

1.2 Matrix Lie Groups: some examples

• General and special linear groups

The general linear group is denoted by GL(n;F) and is our main example of
a matrix group. Any of the other groups presented in these notes will be a
subgroup of some GL(n;F). We define it as

GL(n;F) := {g is n× n matrix with det(g) 6= 0} (1.1)



6

The simplest subgroup ofGL(n;F) is the special linear group for the number
filed F defined as

SL(n;F) := {g ∈ GL(n;F)| det(g) = 1)} (1.2)

Subgroups whose elements satisfy det(g) = 1 are also called unimodular.

• (Pseudo) Orthogonal groups = (Indefinite) orthogonal groups

Choosing F = R, one has an important class of subgroups of GL(n;R), the so
called (pseudo) orthogal groups, defined by

O(p, q) :=
{
g ∈ GL(n;R)| gE(p,q)gT = E(p,q)

}
(1.3)

where E(p,q) is a n × n diagonal matrix with the first p entries +1 and the
remaining q entries −1 (clearly p+ q = n):

E(p,q) := diag(1, · · · , 1︸ ︷︷ ︸
p

,−1, · · · ,−1︸ ︷︷ ︸
q

) . (1.4)

If either q or p are zero, the group is simply called orthogonal, otherwise
pseudo-orthogonal. In this case one usually writes O(n) instead of O(n, 0) or
O(0, n). Taking the determinant of the defining relation, i.e. Eq. (1.3), lead
us to

det
(
gE(p,q)gT

)
= det

(
E(p,q)

)
⇔ det(g)2det

(
E(p,q)

)
= det

(
E(p,q)

)
⇒ det(g)2 = 1

and, therefore det(g) = ±1 for g ∈ O(p, q).
Ex: The Lorentz group is O(1, 3) or O(3, 1) depending on metric convention.
Ex: Rotations and reflections in 3D space is O(3).

Those elements for which the determinant is +1 form a subgroup (of index
two, two copies), and are called the unimodular or special (pseudo) or-
thogonal groups

SO(p, q) := {g ∈ O(p, q)| det(g) = 1} (1.5)

Here one usually writes SO(n) instead of SO(n, 0) or SO(0, n).
Ex: Rotations in 3D space is SO(3).

• (Pseudo) Unitary groups = (Indefinite) Unitary groups

Next we look at the (pseudo) unitary groups, defined by

U(p, q) :=
{
g ∈ GL(n;C)| gE(p,q)g† = E(p,q)

}
(1.6)
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where † denotes the Hermitian conjugation. Here, the terminology is entirely
analogous to the orthogonal groups, i.e. we simply speak of unitary groups
is p = 0 or q = 0, in which case we write U(n) instead of U(n, 0) or U(0, n),
otherwise of pseudo unitary groups. Taking the determinant of the above
defining relation leads to

det
(
gE(p,q)g†

)
= det

(
E(p,q)

)
⇔ |det(g)|2 det

(
E(p,q)

)
= det

(
E(p,q)

)
|det(g)|2 = 1

and therefore det(g) = eiθ for θ ∈ [0, 2π[. The subgroups of matrices with unit
determinant are the unimodular or special (pseudo) unitary groups

SU(p, q) := {g ∈ U(p, q)| det(g) = 1} (1.7)

Again we write SU(n) instead of SU(n, 0) or SU(0, n).
Ex: SU(2) of spin, SUL(2) of electroweak force, SU(3) of color.

• Symplectic groups

Let In be the unit n× n matrix, and Ê(2n) the antisymmetric 2n× 2n matrix

Ê(2n) :=

On In
−In On

 (1.8)

We define SP (2n;F), the symplectic group in 2n dimension over the field
F = R, C, by

Sp(2n;F) :=
{
g ∈ GL(2n;F)| gÊ(2n)gT = Ê(2n)

}
(1.9)

1.3 Lie algebras: general concepts

I Two Lie groups are isomorphic if: their underlying manifolds are topologically
equivalent; or the functions defining the group composition (multiplication) laws are
equivalent.

I Showing the topological equivalence of two manifolds (can be smoothly deformed
to each other, equal topological numbers) is not an easy task. Showing the equiva-
lence of two composition laws is typically a much more difficult task (composition
laws are in general nonlinear).

I The study of Lie groups would simplify greatly if the group composition law could
somehow be linearized, and if this linearization retained a substantial part of the
information of the original composition law. Good news, this can be done!
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I A Lie group can be linearized in the neighborhood of any of its points. Lineariza-
tion amounts to Taylor series expansion about the coordinates that define the group
operation. What is being Taylor expanded is the group composition function.

I A Lie group is homogeneous: every point looks locally like every other point.
This can be seen as follows:

• The neighborhood of group element a can be mapped into the neighborhood
of group element b by multiplying a (and every element in its neighborhood)
on the left by ba−1 (or on the right by a−1b). This will map a into b and points
near a to points near b

I It is therefore necessary to study the neighborhood of only one group operation
in detail. A convenient point to choose is the identity.

I Linearization of a Lie group about the identity generates a new set of operators.
These operators form a Lie algebra.

Lie algebras are constructed by linearizing Lie groups.

I Before defining a Lie algebra let us look into some concepts that come handy:

F Field: A field F is a set of elements f0, f1, . . . with:

– Operation +, called addition. F is an Abelian group under such opera-
tion, f0 is the identity.

– Operation ◦, called scalar multiplication. Under such operation it shares
many properties of a group: closure, associativity, existence of identity,
existence of inverse except for f0, distributive law (fi ◦ (fj + fk) = fi ◦
fj + fi ◦ fk).

– If fi ◦ fk = fk ◦ fi the field is commutative;

– We will use F = R, C

F Linear vector space: A linear vector space V consists of a collection of vec-
tors ~v1, ~v2, . . ., and a collection of f1, f2, . . . ∈ F, with two kinds of operations:

– Vector addition +, (V ,+) is an Abelian group, ~v1 + ~v2 = ~v2 + ~v1

– Scalar multiplication ◦, sharing the following properties when fi ∈
F, ~vj ∈ V

fi ◦ ~vj ∈ V Closure

fi ◦ (fj ◦ ~vk) = (fi ◦ fj) ◦ ~vk Associativity

1 ◦ ~vi = ~vi = ~vi ◦ 1 Identity

fi ◦ (~vj + ~vk) = fi ◦ ~vj + fi ◦ ~vk Bilinearity
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F Algebra: A linear algebra consists of a collection of vectors ~v1, ~v2, . . . ∈ V
and a collection of f1, f2, . . . ∈ F, together with three kinds of operations:

– Vector addition +, satisfying the same postulates as in the linear vector
space;

– Scalar multiplication ◦, satisfying the same postulates as in the linear
vector space;

– Vector multiplication �, with the following additional postulates for
~vi ∈ V

~v1�~v2 ∈ V Closure

(~v1 + ~v2)�~v3 = ~v1�~v3 + ~v1�~v3 Bilinearity

Different varieties of algebras may be obtained, depending on which ad-
ditional postulates are also satisfied: associativity, existence of identity,
. . .

I Definition of Lie algebra g: It is an algebra, where vector multiplication has
the following properties

a) The commutator of two elements is again an element of the algebra

a�b ≡ [a, b] ∈ g ∀a, b ∈ g .

b) A linear combination of elements of the algebra is again an element of the
algebra

αa+ βb ∈ g if a, b ∈ g.

Therefore the element 0 (zero) belongs to the algebra.

c) The following linearity is postulated

[αa+ βb, c] = α[a, b] + β[b, c] for all a, b, c ∈ g.

d) Interchanging both elements of a commutator result in the relation

[a, b] = −[b, a] .

e) Finally, the Jacobi identity has to be satisfied

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 .

Note that we do not demand that the commutators are associative, i.e. the
relation [a, [b, c]] = [[a, b], c] is not true in general.
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f) In addition to the previous points we demand that a Lie algebra has a fi-
nite dimension n, i.e., it comprises a set of n linearly independent elements
e1, . . . , en, which act as a basis, by which every element x of the algebra can
be represented uniquely like

x =
n∑
j

ξjej .

In other words, the algebra constitutes an n-dimensional vector space (sometimes
the dimension is named order). If the coefficients ξj and α, β are real, the algebra
is named real. In a complex or complexified algebra the coefficients are complex.

A Lie algebra is a vector space with an alternate product satisfying the Jacobi identity.

I Due to condition a) the commutator of two basis elements belongs also to the
algebra and therefore, following f), we get

[ei, ek] =
n∑
l=1

Ciklel .

The n3 coefficients Cijk are called structure constants relative to the basis ei.
They are not invariant under a choice of basis.

IGiven a set of basis elements, the structure constants specify the Lie algebra
completely. A Lie algebra with complex structure constants is complex itself.

I We can use the Jacobi identity to find a relation between the structure constants

0 =[ei, [ej, ek]] + [ej, [ek, ei]] + [ek, [ei, ej]]

=
∑
l

Cjkl[ei, el] +
∑
l

[ej, el] +
∑
l

Cijl[ek, el]

=
∑
lm

CjklCilmem +
∑
lm

CkilCjlmem +
∑
lm

CijlCklmem

Because the basis elements em are linearly independent, we get n equations for given
values i, j, k

0 =
∑
l

(CjklCilm + CkilCjlm + CijlCklm) , (m = 1, . . . , n) (1.10)
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I There is also an antisymmetry relation in the first two indices of the structure
constants, since

[ei, ek] = −[ek, ei] ⇔
∑
l

Ciklel = −
∑
l

Ckilel

Due to the linear independence of the ei basis elements we get Cikl = −Ckil. We
will see that for su(N) all indices are antisymmetric.

1.4 How good this really is?

I Linearization of a Lie group in the neighborhood of the identity to form a Lie
algebra preserves the local properties but destroys the global ones, what happens
far from the identity? Or in other words, can we recover the Lie group from its Lie
algebra?

I Let us assume we have some operator X in a Lie algebra. Then if ε is a small real
number, I+ εX represents an element in the Lie group close to the identity. We can
attempt to move far from the identity by iterating this group operation many times

limk→∞

(
I +

1

k
X

)k
=

∞∑
n=0

Xn

n!
= EXP(X) Exponential Map

Lie Group = EXP (Lie Algebra)

I There are some very important questions to answer:

F Does the exponential function map the Lie algebra back onto the entire Lie
group?

F Are the Lie groups with isomorphic Lie algebras themselves isomorphic?

I We shall explore these questions in the next sections.
I From the Baker-Campbell-Hausdorff formula:

eaeb = ea+b+ 1
2 [a,b]+ 1

12 [a,[a,b]]+ 1
12 [a,[b,a]]+···

we see that if the commutator is in the algebra, the argument of the exponent on the
right side is also in the algebra. The squared generators need not be in the algebra
(often they are not) but the commutator must be.



Chapter 2

Let’s rotate!
Rotational group in 2 and 3 dimensions

We look at some of the simplest and common groups in Physics: SO(2) and SO(3).

We look at the group definition, how to build the irreducible representations,

ifinitesimal generators and consequently their Lie algebras

2.1 The rotational group in 2 dimensions

We define the abstract group of proper (no reflections) rotations SO(2) to contain
all rotations about the origin of a two-dimensional plane. The group as infinitely
many elements, which can be specified using a continuous parameter α ∈ [0, 2π[.

2.1.1 The SO(2) group

The SO(2) abstract group can be represented by SO(2) matrices

SO(2) :=
{
g ∈ GL(2,R)| ggT = I, det(g) = 1

}
(2.1)

i.e. the set of unimodular, real and orthogonal 2× 2 matrices.

General structure: A =

a b

c d

 with det(A) = ad− bc = 1 .

A is orthogonal:

a c

b d


︸ ︷︷ ︸

AT

=
1

detA

 d −b

−c a


︸ ︷︷ ︸

A−1

⇒ d = a and c = −b .

Orthogonality: a2 + b2 = 1 ⇒ −1 ≤ a︸︷︷︸
cosα

≤ 1 − 1 ≤ b︸︷︷︸
− sinα

≤ 1 .

12
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I The general representation is then

R : SO(2) →GL(2,R)

R(α) =

cosα − sinα

sinα cosα

 and α ∈ [0, 2π[ .
(2.2)

Note: 2D rotations commute

R(α2)R(α1) = R(α1 + α2) = R(α2 + α1) = R(α1)R(α2). (2.3)

i.e. the group is Abelian. Therefore, its complex irreducible representations are
one-dimensional (ex: eiα). We then have that SO(2) can be mapped to general real
2×2 matrices to form irreducible representations, or general complex 2×2 matrices,
but in this case (as illustrated below) the representation is reducible:

R : SO(2) → GL(2,R) irreducible

D : SO(2) → GL(2,C) reducible

SO(2) is an example of a compact Lie group, meaning roughly that it is a
continuous group which can be parametrized by parameters in a finite interval.

2.1.2 The SO(2) 1D irrep

I Following the definition of a representation, the 2 × 2 matrices R(α) might rep-
resent transformations D(α) in a complex two-dimensional vector space.

F The eigenstate of R(α) are

û1 =
1√
2

1

i

 and û−1 =
1√
2

i
1

 (2.4)

with eigenvalues λ1(α) = e−iα and λ−1(α) = eiα as easily can be verified,
ex:cosα − sinα

sinα cosα

 1√
2

1

i

 =
1√
2

cosα− i sinα

sinα + i cosα

 =
1√
2

 e−iα

ie−iα

 (2.5)

F The similarity transformation (map of form D(1)(g) = SD(2)(g)S−1) which
transforms the matrix R(α) into D(α), is 1√

2

 1 −i

−i 1

R(α)

 1√
2

1 i

i 1

 =

e−iα 0

0 eiα

 = D(α), (2.6)
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D(α) is obviously reducible.

I The two resulting non-equivalent (cannot be related by similarity transformations)
one-dimensional irreps of SO(2) are then given by

D(1)(α) = e−iα and D(−1)(α) = eiα . (2.7)

I We can then write

D(α) = U(−α)⊕ U(α) , with U(α) = eiα (2.8)

Therefore we define the representation

U : SO(2)→ GL(1;C) or U(1) :=
{
g ∈ GL(1;C)| gg† = 1)

}
(2.9)

Since the representation U is bijective (one-to-one) on U(1),

SO(2) ∼= U(1) (2.10)

This can also be seen from the fact that U is injective (distinct elements in the
domain are mapped to different elements in the image/codomain), using the first
isomorphism theorem:

First Isomorphism Theorem

When given a homomorphism f : G→ H (a group multiplication preserving map),
we can identify two important subgroups:

F The image of f , written as im f ⊂ H. It is the set of all h ∈ H which are
mapped to by f

im f := {h ∈ H| h = f(g) g ∈ G}

F The kernel of f , written as ker f ⊂ G, is the set of all g that are mapped into
the identity element I of H

ker f := {g ∈ G| f(g) = IH} .

The theorem then reads: Let G and H be groups, and f : G → H be a homo-
morphism. We have

G/ker f ∼= im f
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Notice that the elements U(α) = eiα of U(1) lie along S1, the unit circle in the
complex plane

S1 := {z ∈ C| |z| = 1} (2.11)

Thus
SO(2) ∼= SO(2) ∼= U(1) ∼= S1 ∼= [0, 2π[∼= R/Z

I There are infinitely many non-equivalent irreps for SO(2). We may indicate the
various one-dimensional vector spaces by an index k in order to distinguish then, as
well as the corresponding irrep, and the only basis vector of V (k) by ûk

D(k)(α) = e−ikα , k = 0,±1,±2, · · · (2.12)

The representations D(k) are called the standard irreps of SO(2).

I These are non-equivalent irreps because

Similarity trans.: s−1exp[−ik1α]s = exp[−ik2α] if and only if k1 = k2 . (2.13)

2.1.3 The infinitesimal generator of SO(2)

I Recall that Cn (the cyclic group with n elements) was generated by a single
element a, i.e. rotation of 2π/n. As we let n go to infinity, we notice that this
rotation gets smaller and smaller. In this way a very small rotation ϕ → 0 can be
said to generate the group SO(2).

C3 C4 · · · C∞

F Taylor expand the representation R(α) near the identity

R(α) = R(0) + α
d

dα
R(α)

∣∣∣∣
α=0︸ ︷︷ ︸+ · · ·

X =

0 −1

1 0

 .

(2.14)

The matrix X is called the infinitesimal generator of rotations in two di-
mensions.
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F For angles different from zero one has

d

dα
R(α) =

− sinα − cosα

cosα − sinα

 =

0 −1

1 0

cosα − sinα

sinα cosα


=XR(α) ,

(2.15)

which is a differential equation, which has the solution

R(α) = exp [αX] =
∞∑
k=0

1

k!
αkXk

︸ ︷︷ ︸
def of exp(matrix)

. (2.16)

A representation D(α) for the group elements R(α) of SO(2), can be translated
into a representation d(X) of the infinitesimal generator X of the group, according
to

Exponential Map: D(α) = exp [αd(X)] . (2.17)

The operator X lives in the tangent space (the span of all tangent vectors) of SO(2)
near the identity. X spans an algebra, a vector space endowed with a product with
the property that two elements in the algebra can be “multiplied” and the result is
still in the algebra.

I In the case of the standard irreps given in Eq. (2.12), we find for the representa-
tions d(k)(A) of the generator A of SO(2), i.e.

d(k)(A) = −ik , k = 0,±1,±2, · · · . (2.18)

2.1.4 Representations of the Lie algebra so(2)

I We now turn our attention to a common representation used in quantum me-
chanics. Let H be the Hilbert space of quantum mechanical functions. We define
the representation D : G→ GL(H) by

D(R) ≡ D̂ (operator) (D̂ψ)(~r) := ψ(R−1~r) R ∈ G (2.19)

This equation simply says that rotating a wave function in one direction is the same
as rotating the coordinate axes in the other direction.This is a faithful representation
IWe are interested in finding how the Lie algebra representations act on this space.
D : SO(2)→ GL(H)

F We then have from the active rotation
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rotation: [D̂ψ](~r) = ψ([R(α)]−1~r) .

↓

exp[αd̂(A)]ψ(~r) = ψ(~r + ∆~r)

↓[
1 + αd̂(A) + α2

2 [d̂(A)]2 + · · ·
]
ψ(~r) = ψ(~r) +

(
∆x ∂

∂x + ∆y ∂
∂y

)
ψ(~r)+

+1
2

(
(∆x)2 ∂2

∂x2 + 2∆x∆y ∂2

∂x∂y

+(∆y)2 ∂2

∂y2

)
ψ(~r) + · · ·

(2.20)

F We need to expand ∆x, ∆y in α, i.e.

∆~r =

∆x

∆y

 = R(−α)~r − ~r =

 αy − α2

2 x+ · · ·

−αx− α2

2 y + · · ·

 . (2.21)

F Consequently, to first order in α[
1 + αd̂(A)

]
ψ(~r) = ψ(~r) + α

(
y
∂

∂x
− x ∂

∂y

)
ψ(~r) . (2.22)

F Then we find for the Hilbert space functions ψ(x, y), to first order in α, the
following representation

d : so(2)→ GL(H) d̂(A) = y
∂

∂x
− x ∂

∂y
. (2.23)

I Now, one might like to inspect the higher order terms, the second order in α term
is given by

α2

2

(
y2 ∂

2

∂x2
− 2xy

∂2

∂x∂y
+ x2 ∂

2

∂y2

)
ψ(~r) =

α2

2

(
y
∂

∂x
− x ∂

∂y

)2

ψ(~r)

So we find that also to second order in α, the solution is given by the same differential
operator. In fact, this result is consistent with expansions up to any order in α.
I We can use another parametrization, the azimuthal parametrization

F We introduce the azimuthal angle ϕ in the (x, y)-plane, according to

x = |~r| cosϕ and y = |~r| sinϕ , (2.24)
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then

[D̂ψ](|~r|, ϕ) = ψ(|~r|, ϕ−α) = ψ(|~r|, ϕ)−α ∂

∂ϕ
ψ(|~r|, ϕ)+

α2

2

(
∂

∂ϕ

)2

ψ(|~r|, ϕ)+· · ·

(2.25)
which lead us to the differential operator

d̂(A) = − ∂

∂ϕ
. (2.26)

Because of this result, ∂/∂ϕ is sometimes referred to as the generator of rota-
tions in the (x, y)-plane.

F From Fourier-analysis we know that wave functions on the interval [0, 2π[ has
as a basis, the functions

ψm(ϕ) = eimϕ , m = 0,±1,±2 · · · (2.27)

Any well-behaved function ψ(ϕ) (ϕ ∈ [0, 2π[) can be expanded in a linear
combination of the basis, i.e.

ψ(ϕ) =
∞∑

m=−∞
amψm(ϕ) , (2.28)

Ortogonality: (ψm, ψn) =

∫ 2π

0

dϕ

2π
ψ∗m(ϕ)ψn(ϕ) =

∫ 2π

0

dϕ

2π
ei(n−m)ϕ = δnm .

Coefficients: am = (ψm, ψ) =

∫ 2π

0

dϕ

2π
ψ∗m(ϕ)ψ(ϕ) =

∫ 2π

0

dϕ

2π
ψ(ϕ)e−imϕ .

(2.29)

I Physicists prefer x, p = −i∂/∂x and L̄ = −ir̄ × ∇ (~ = 1). So, instead of the
operator d(A) of Eq. (2.23), we prefer

− ix ∂
∂y

+ iy
∂

∂x
Angular Momentum operator . (2.30)

In order to suit that need, we take for the generator of SO(2) the operator L, defined
by

L = iA =

0 −i

i 0

 . (2.31)

Physicists like Hermitian (H† = H) operators with real eigenvalues corresponding
to observalbes.
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The group elements R(α) of SO(2) can then be written in the form

R(α) = exp[−iαL] . (2.32)

In this case the representation d(L) of the generator L turns out to be

d̂(L) = −ix ∂
∂y

+ iy
∂

∂x
= −i ∂

∂ϕ
. (2.33)

F Clearly, there exists no essential difference between the generator L and the
generator A. It is just a matter of taste.

F However, notice that whereas A is antisymmetric, L is hermitian. Both, A
and L are traceless, since the group elements R(α) of SO(2) are unimodular.

F In the case of standard irreps, we find for the representation of d(k)(L) of the
generator L the form

d(k)(L) = k , k = 0,±1,±2, · · · . (2.34)

I The special orthogonal group in two dimensions, SO(2), is generated by the
operator L. This means that each element R(α) of the group can be written in
the form R(α) = exp[−iαL]. The reason that we only need one generator for the
group SO(2) is the fact that all group elements R(α) can be parameterized by one
parameter α, representing the rotation angle.

I The operator L spans an algebra, which is a vector space endowed with a product.
Since this algebra generates a Lie-group it’s called a Lie-algebra

so(2) := {X ∈ R2×2
∣∣ XT +X = 0} . (2.35)

R(α)TR(α) = I ⇒ (I + αXT + · · · )(I + αX + · · · ) = I

α(XT +X) = O

det(R(α)) = 1 ⇒ det
(
eαX
)

= eαTr(X) = 1

Tr(X) = 0

Tr is already satisfied by the antisymmetric condition
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2.2 The rotational group in 3 dimensions

2.2.1 The rotation group SO(3)

I Just as SO(2) contained all rotations around the origin of a two-dimensional
plane, we define SO(3) to be the abstract Lie group of all rotations about the origin
of a three-dimensional Euclidean space R3

SO(3) :=
{
g ∈ GL(3,R)| ggT = I, detg = 1

}
(2.36)

I An important difference compared to rotations in two dimensions is that in three
dimensions rotations do not commute, i.e. 3D rotations form a non-Abelian group.

An arbitrary rotation can be characterized in various different ways:

F Euler-Angle Parameterization

Any rotation in R3 can be described as a series of rotations about the x−, y−
and z−axis. The three rotations around the principal axes of the orthogonal
coordinate system (x, y, z) are given by

R(x̂, α) =


1 0 0

0 cosα − sinα

0 sinα cosα

 , R(ŷ, θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



R(ẑ, ϕ) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


(2.37)

A combination of 3 rotations is always sufficient to reach any frame. The
three elemental rotations may be extrinsic (rotations about the axes xyz of
the original coordinate system, which is assumed to remain motionless), or
intrinsic (rotations about the axes of the rotating coordinate system XY Z,
solidary with the moving body, which changes its orientation after each ele-
mental rotation).

Different authors may use different sets of rotation axes to define Euler angles,
or different names for the same angles. Therefore, any discussion employing
Euler angles should always be preceded by their definition.

Without considering the possibility of using two different conventions for the
definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible
sequences of rotation axes, divided in two groups:
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– Proper Euler angles: (intrinsic)

(z − x− z, x− y − x, y − z − y, z − y − z, x− z − x, y − x− y)

– Tait-Bryan angles: (extrinsic)

(x− y − z, y − z − x, z − x− y, x− z − y, z − y − x, y − x− z)

The parameterization known as Euler parameterization is given by the
rotation matrix

R(α, β, γ) = R(ẑ, α)R(x̂, β)R(ẑ, γ)

=

cosα cos γ − cos β sinα sin γ − cosα sin γ − cos β cos γ sinα sinα sin β

cos γ sinα + cosα cos β sin γ cosα cos β cos γ − sinα sin γ − cosα sin β

sin β sin γ cos γ sin β cos β


α, γ ∈ [0, 2π[ , β ∈ [0, π] .

F Axis-Angle Parameterization

We can characterize a rotation by means of its rotation axis, which is the one-
dimensional subspace of the three dimensional space which remains invariant
under the rotation, and by its rotation angle. The direction of the rotation
axis needs two parameters and the rotation angle gives the third.

2.2.2 The generators

I Using the first parameterization we can extract the infinitesimal generators of
rotations in three dimensions, i.e.

A1 =
d

dα
R(x̂, α)

∣∣∣∣
α=0

=


0 0 0

0 0 −1

0 1 0

 , A2 =
d

dθ
R(ŷ, θ)

∣∣∣∣
θ=0

=


0 0 1

0 0 0

−1 0 0



A3 =
d

dϕ
R(ẑ, ϕ)

∣∣∣∣
ϕ=0

=


0 −1 0

1 0 0

0 0 0

 (2.38)

I In terms of the Levi-Civita symbol, we can express the above matrix representa-
tion for the generators of SO(3), by

(Ai)jk = −εijk , εijk =


+1 for ijk = 123, 312, 231 .

−1 for ijk = 132, 213, 321 .

0 for all other combinations .

. (2.39)
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A useful relation for the product of two Levi-Civita tensors is

εijkεilm = ε1jkε1lm + ε2jkε2lm + ε3jkε3lm = δjlδkm − δjmδkl . (2.40)

Equipped with this knowledge let us compute the commutator of two generators.
We have

([Ai, Aj])kl =(AiAj)kl − (AjAi)kl = (Ai)km(Aj)ml − (Aj)km(Ai)ml
=εikmεjml − εjkmεiml = εmikεmlj − εmjkεmli
=δilδkj − δijδkl − (δjlδki − δjiδkl) = δilδkj − δjlδki
=εmijεmlk = −εijmεmkl = εijm(Am)kl
=(εijmAm)kl .

(2.41)

I So, for the commutator of the generators we find

[Ai, Aj] = εijmAm . (2.42)

εijm are called structure constants.
These infinitesimal generators define the Lie algebra

so(3) := {X ∈ R3×3
∣∣ XT +X = 0, Tr(X) = 0} . (2.43)

2.2.3 The Axis-Angle Parameterization

I In order to determine the Axis-Angle parameterization of a rotation in three
dimensions, we define an arbitrary vector ~n by

~n = (n1, n2, n3) , (2.44)

as well as its inner product with the three generators, given by the expression

~n. ~A = niAi = n1A1 + n2A2 + n3A3 . (2.45)

I We then proceed as follows:

F We compute higher order powers of this inner product. Actually, it is suffi-
cient to determine the third power of the above expression, i.e. (n2 = ~n.~n)[

(~n. ~A)3
]
ab

= [(niAi)(njAj)(nkAk)]ab = ninjnk [AiAjAk]ab

=ninjnk(Ai)ac(Aj)cd(Ak)db = −ninjnkεiacεjcdεkdb
= −ninjnk (δidδaj + δijδad) εkdb

= −ndnankεkdb + n2nkεkab = 0− n2nk(Ak)ab

=
(
−n2~n. ~A

)
ab

(2.46)
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F Using the above relation repeatedly for the order powers of ~n. ~A, we may also
determine its exponential, i.e.

exp[~n. ~A] =I + ~n. ~A+
1

2!
(~n. ~A)2 +

1

3!
(~n. ~A)3 +

1

4!
(~n. ~A)4 + ·

=I + ~n. ~A+
1

2!
(~n. ~A)2 +

1

3!
(−n2~n. ~A) +

1

4!
(−n2(~n. ~A)2) + · · ·

=I +

(
1− n2

3!
+
n4

5!
− n6

7!
+ · · ·

)
(~n. ~A)+

+

(
1

2!
− n2

4!
+
n4

6!
− n6

8!
+ · · ·

)
(~n. ~A)2

=I +

(
n− n3

3!
+
n5

5!
− n7

7!
+ · · ·

)
(n̂. ~A) + (note n̂)

+

(
n2

2!
− n4

4!
+
n6

6!
− n8

8!
+ · · ·

)
(n̂. ~A)2

(2.47)

We then get

exp[~n. ~A] = I + sinn(n̂. ~A) + (1− cosn)(n̂. ~A)2 . (2.48)

F The exponential operator leaves the vector ~n invariant, i.e.

exp[~n. ~A]~n = [I + ~n. ~A+ · · · ]~n = ~n . (2.49)

This is easy to see this by looking at

[(~n. ~A)~n]i = (~n. ~A)ijnj = (nkAk)ijnj = nk(Ak)ijnj = −nkεkijnj = 0 , (2.50)

or equivalently
(~n. ~A)~n = 0 (2.51)

F The axis through the vector ~n is invariant, which implies that it is the rota-
tion axis, as expected.

I The matrix ~n. ~A takes the explicit form

~n. ~A =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 (2.52)

which clearly is a traceless and antisymmetric matrix.
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IWe have then found a second parameterization of a rotation around the origin
in three dimensions

Rotation parameterization: R(ϕ, n̂) = exp[ϕn̂. ~A]

Rotation angle: ϕ ≡ n =
√
n2

1 + n2
2 + n2

3

Rotation axis: n̂ = ~n/n

R(ϕ, n̂) = exp
[
ϕn̂. ~A

]
= I3 + sinϕ

(
n̂. ~A

)
+ (1− cosϕ)

(
n̂. ~A

)2

=

 cosϕ+ n̂2
1(1− cosϕ) n̂1n̂2(1− cosϕ)− n̂3 sinϕ n̂1n̂3(1− cosϕ) + n̂2 sinϕ

n̂1n̂2(1− cosϕ) + n̂3 sinϕ cosϕ+ n̂2
2(1− cosϕ) n̂2n̂3(1− cosϕ)− n̂1 sinϕ

n̂1n̂3(1− cosϕ)− n̂2 sinϕ n̂2n̂3(1− cosϕ) + n̂1 sinϕ cosϕ+ n̂2
3(1− cosϕ)


I This parameterization is very useful because it makes use of the infinitesimal

generators of SO(3).

2.2.4 The so(3) Lie-algebra

I Instead of the antisymmetric generators Ai (i = 1, 2, 3), we prefer to continue
with the Hermitian generators Li = iAi, i.e.

L1 =


0 0 0

0 0 −i

0 i 0

 , L2 =


0 0 i

0 0 0

−i 0 0

 , L3 =


0 −i 0

i 0 0

0 0 0

 . (2.53)

I An arbitrary rotation R(n̂, α) with a rotation angle α around the axis spanned
by n̂ can be expressed as

R(n̂, α) = exp[−iαn̂.~L] = I + sinα(−in̂.~L) + (1− cosα)(−in̂.~L)2 . (2.54)

F The Lie-algebra is spanned by Ai or −iLi.

F The product of the Lie-algebra is given by the Lie-product, defined by the
commutator of two elements of the algebra

[Li, Lj] = iεijmLm . (2.55)

This establishes their relation with the angular momentum in Quantum Me-
chanics.

F Since the SO(3) generator space is an algebra, any real linear combination of
−iLi’s can serve as a generator of a rotation.
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F We may extend the algebra to include complex linear combinations. While those
operators do not, in general, represent rotations, they can be very useful for
the construction of the representations of SO(3). (We shall explore this in
detail when working with the SU(2) group)

F Two such combinations are (the ladder operators)

L± = L1 ± iL2 , (2.56)

satisfying
[L3, L±] = ±L± and [L+, L−] = 2L3 (2.57)

with L†± = L∓.

2.2.5 The Casimir operator

I The first lemma of Schur states that a matrix which commutes with all matrices
D(g) of an irreducible representation D must be proportional to the unit matrix.

Let us find the matrix that commutes will all rotations:

F We represent such a matrix by the generator combination X, i.e. exp[−iX],
satisfying

exp[−iX]exp[−iαn̂.~L] = exp[−iαn̂.~L]exp[−iX] . (2.58)

F Only true when X commutes with n̂.~L. The Baker-Campbell-Hausdorff for-
mula:

eaeb = ea+b+ 1
2 [a,b]+ 1

12 [a,[a,b]]+ 1
12 [a,[b,a]]+···

F Consequently, X must be an operator which commutes with all three genera-
tors Li. A possible solution is

X = ~L2 = L2
1 + L2

2 + L2
3 (2.59)

which satisfies
[~L2, Li] = 0 for i = 1, 2, 3 . (2.60)

F The operator X (or L2) is called the (second order) Casimir operator of
SO(3).

F L2 is not an element of the Lie-algebra, because it can not be written as a
linear combination of generators. It is important for the classification of the
irreps.
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F We can also express it in term of the ladder operators

L2 =L2
3 + L2

1 + L2
2 = L2

3 +
1

4
(L+ + L−)2 − 1

4
(L+ − L−)2

=L2
3 +

1

2
(L+L− + L−L+)

=L2
3 + L3 + L−L+

=L2
3 − L3 + L+L− (2.61)

2.2.6 The (2` + 1)-dimensional irrep d`

A representation of the Lie-algebra and hence of the Lie-group itself, is fully char-
acterized once the transformations of d(`)(Li) (for i = 1, 2, 3) of a certain complex
vector space V` onto itself are known.

We take the following strategy:

F Select an orthonormal basis in V` such that d(`)(L3) is diagonal in that basis.
(convenience)

F From SO(2) we know that the eigenvalues of the rotations around the z-axis
represented by the generator L3 are integer numbers.

F We might label the basis vectors of V` according to the eigenvalues for d(`)(L3),
i.e.

d(`)(L3) |`,m〉 = m |`,m〉 for m = 0,±1,±2, · · · (2.62)

The Casimir operator L2

L2 = [d(`)(L1)]
2 + [d(`)(L2)]

2 + [d(`)(L3)]
2 (2.63)

commutes with [d(`)(Li)]. Thus, from Schur’s first lemma

L2 |`,m〉 = λ︸︷︷︸
=`(`+1)

|`,m〉 for all basis vectors. (2.64)

I will show during the lecture that λ = `(`+ 1).
I The non-negative integer ` characterizes the irrep d(`) of SO(3). To each

possible values corresponds a non-equivalent unitary irrep. This way we obtain for
V` the following basis (see lecture)

|`,−`〉 , |`,−`+ 1〉 , · · · , |`, `− 1〉 , |`, `〉 . (2.65)

Its dimension is determined by the structure of the basis, i.e.

dim(d(`)) = 2`+ 1 . (2.66)
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I At this basis L3 is represented by a diagonal (2`+1)× (2`+1) matrix of the form

d(`)(L3) =



`

`− 1

· · ·

−`+ 1

−`


traceless and Hermitain. (2.67)

We can now see how the raising/lowering operators act on the vector basis:

F Using the commutation relations for the generators (2.57) we get

d(`)(L3)d
(`)(L±) = d(`)(L±L3 + [L3, L±]) = d(`)(L±)d(`)(L3)± d(`)(L±) .

F Acting this operator in the vector basis we get

d(`)(L3)
(
d(`)(L±) |`,m〉

)
=d(`)(L±)

(
d(`)(L3)± 1

)
|`,m〉

=(m± 1)
(
d(`)(L±) |`,m〉

)
F We can then conclude that

d(`)(L±) |`,m〉 = C±(`,m) |`,m± 1〉 .

with C±(`,m) some constant of proportionality

F The constant can be determined by

|C±(`,m)|2 =
∣∣∣d(`)(L±) |`,m〉

∣∣∣2
= 〈`,m| [d(`)(L±)]†d(`)(L±) |`,m〉

= 〈`,m|
{
L2 −

(
[d(`)(L3)]

2 ± d(`)(L3)
)}
|`,m〉

=`(`+ 1)−m(m± 1)

(2.68)

F It is convenient not to consider a phase factor for the coefficient C±(`,m) and
to take the following real solutions

C±(`,m) =
√
`(`+ 1)−m(m± 1) . (2.69)

I Let us take as an example the three dimensional irrep d(1) of the so(3) Lie algebra
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F At the basis of eigenstates of d(1)(L3) given by

|1, 1〉 =


1

0

0

 , |1, 0〉 =


0

1

0

 , |1,−1〉 =


0

0

1

 (2.70)

Therefore

d(1)(L3) =


1 0 0

0 0 0

0 0 −1

 . (2.71)

F For the raising and lowering operators we get
d(1)(L+) |1,−1〉 =

√
2 |1, 0〉

d(1)(L+) |1, 0〉 =
√

2 |1, 1〉

d(1)(L+) |1, 1〉 = 0

,


d(1)(L−) |1,−1〉 = 0

d(1)(L−) |1, 0〉 =
√

2 |1,−1〉

d(1)(L−) |1, 1〉 =
√

2 |1, 0〉

(2.72)

in matrix form

d(1)(L+) =
√

2


0 1 0

0 0 1

0 0 0

 and d(1)(L−) =
√

2


0 0 0

1 0 0

0 1 0

 (2.73)

F The matrices d(1)(L1,2) can be obtained from the above expressions, i.e.

d(1)(L1) =
1√
2


0 1 0

1 0 1

0 1 0

 and d(1)(L2) =
1

i
√

2


0 1 0

−1 0 1

0 −1 0

 (2.74)

F We can now study the related representation D(1) of the group elements of
SO(3)

D(1)(n̂, α) = exp[−iαn̂.d(1)(~L)] . (2.75)
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F Rotation around the x-axis

D(1)(R(x̂, α)) =exp[−iαd(1)(L1)]

=I + sinα(−id(1)(L1)) + (1− cosα)(−id(1)(L1))
2

=


1
2(cosα + 1) − i√

2
sinα 1

2(cosα− 1)

− i√
2

sinα cosα − i√
2

sinα

1
2(cosα− 1) − i√

2
sinα 1

2(cosα + 1)


(2.76)

F Rotation around the y-axis

D(1)(R(ŷ, θ)) =exp[−iαd(1)(L2)]

=I + sin θ(−id(1)(L2)) + (1− cos θ)(−id(1)(L2))
2

=


1
2(1 + cos θ) − 1√

2
sin θ 1

2(1− cos θ)

1√
2

sin θ cos θ − 1√
2

sin θ

1
2(1− cos θ) 1√

2
sin θ 1

2(1 + cos θ)


(2.77)

F Rotation around the z-axis

D(1)(R(ẑ, ϕ)) =exp[−iϕd(1)(L3)]

=I + sinϕ(−id(1)(L3)) + (1− cosϕ)(−id(1)(L3))
2

=


e−iϕ 0 0

0 1 0

0 0 eiϕ


. (2.78)

Note that these rotation matrices are not the same as the ones presented in the
beginning of this section.

2.2.7 Standard irreps in terms of spherical harmonics

I SO(3) is the symmetry group rotations in 3D
I Spherical harmonics serve as a well-behaved function basis

Y`m(θ, ϕ) , for ` = 0, 1, 3, · · · and m = −`, · · · , ` (2.79)

Some properties of the wave functions:
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F The innerproduct for two functions χ and ψ is defined as

(ψ, χ) =

∫
sphere

dΩψ∗(θ, ϕ)χ(θ, ϕ) . (2.80)

F The spherical harmonics form an orthogonal basis for this innerproduct∫
sphere

dΩY ∗λµ(θ, ϕ)Y`m(θ, ϕ) = δλ`δµm . (2.81)

F Each function f(θ, ϕ) on the sphere can be expanded in terms of the spherical
harmonics

f(θ, ϕ) =
∞∑
`=0

∑̀
m=−`

B`mY`m(θ, ϕ) . (2.82)

F The coefficients are given by

B`m =

∫
sphere

dΩY ∗`m(θ, ϕ)f(θ, ϕ) (2.83)

I An active rotation R(n̂, α) in three dimensions induces a transformation in func-
tion space given by (unit sphere)

D̂(n̂, α)f(~r) = f([R(n̂, α)]−1~r) with ~r(θ, ϕ) =


sin θ cosϕ

sin θ sinϕ

cos θ

 (2.84)

Let us study the differential operators that follow from the three generators Li:

F Rotation around the z-axis R(ẑ, α) in leading order in α

~r(θ + ∆θ, ϕ+ ∆ϕ) =R(ẑ, α)−1~r(θ, ϕ) =


1 α 0

−α 1 0

0 0 1

~r(θ, ϕ)

=


sin θ(cosϕ+ α sinϕ)

sin θ(−α cosϕ+ sinϕ)

cos θ


(2.85)

Since

~r(θ + ∆θ, ϕ+ ∆ϕ) ' ~r(θ, ϕ) + ∆θ
∂

∂θ
~r(θ, ϕ) + ∆ϕ

∂

∂ϕ
~r(θ, ϕ) (2.86)
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we find
∆θ = 0 and ∆ϕ = −α . (2.87)

We then get

D̂(ẑ, α)f(~r) = f([R(ẑ, α)]−1~r)

⇔
(

1− iαd̂(L3)
)
f(~r) =

(
1− α ∂

∂ϕ

)
f(~r)

Form which we get

d̂(L3) = −i ∂
∂ϕ

. (2.88)

F Rotation around the x-axis R(x̂, α) in leading order in α

~r(θ + ∆θ, ϕ+ ∆ϕ) =


1 0

0 1 α

0 −α 1

~r(θ, ϕ) =


sin θ cosϕ

sin θ sinϕ+ α cos θ

−α sin θ sinϕ+ cos θ


(2.89)

we then have
∆θ = α sinϕ and ∆ϕ = α cot θ cosϕ (2.90)

which ultimately leads to the identification

d̂(L1) = i

(
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
(2.91)

F Rotation around the y-axis R(ŷ, α) in leading order in α

~r(θ + ∆θ, ϕ+ ∆ϕ) =


1 0 −α

0 1 0

α 0 1

~r(θ, ϕ) =


sin θ cosϕ− α cos θ

sin θ sinϕ

α sin θ cosϕ+ cos θ

 (2.92)

we then have
∆θ = −α cosϕ and ∆ϕ = α cot θ sinϕ (2.93)

which ultimately leads to the identification

d̂(L2) = i

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
(2.94)
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I The raising and lowering operators L± are then given by

d̂(L±) = e±iϕ
(
i cot θ

∂

∂ϕ
± ∂

∂θ

)
(2.95)

I For the Casimir operator L2 we get

L2 =[d̂(L1)]
2 + [d̂(L2)]

2 + [d̂(L3)]
2

=−
[
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

]2

−
[
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

]2

− ∂2

∂ϕ2

=−
[
sinϕ

∂2

∂θ2
− sinϕ cosϕ

sin2 θ

∂

∂ϕ
+ cot θ sinϕ cosϕ

∂2

∂θ∂ϕ
+ cot θ cos2 ϕ

∂

∂θ

+ cot θ cosϕ sinϕ
∂2

∂ϕ∂θ
− cot2 θ cosϕ sinϕ

∂

∂ϕ
+ cot2 θ cos2 ϕ

∂2

∂ϕ2

]
−
[
cosϕ

∂2

∂θ2
+

sinϕ cosϕ

sin2 θ

∂

∂ϕ
− cot θ sinϕ cosϕ

∂2

∂θ∂ϕ
+ cot θ sin2 ϕ

∂

∂θ

− cot θ cosϕ sinϕ
∂2

∂ϕ∂θ
+ cot2 θ cosϕ sinϕ

∂

∂ϕ
+ cot2 θ sin2 ϕ

∂2

∂ϕ2

]
− ∂2

∂ϕ2

=−
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
=−

[
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
(2.96)

The spherical harmonics Y`m(θ, ϕ) form a standard basis of a (2`+1)-dimensional
irrep in function space

F For L3 operator we get the following differential equation

− i ∂
∂ϕ

Y`m(θ, ϕ) = d̂(L3)Y`m(θ, ϕ) = mY`m(θ, ϕ) (2.97)

F For the Casimir operator L2 we get

−
[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

]
Y`m(θ, ϕ) =L2Y`m(θ, ϕ)

=`(`+ 1)Y`m(θ, ϕ) .

(2.98)

I Let us look into the solutions of the above differential equations:

F The first equation is simple and has the following solution

Y`m(θ, ϕ) = X`m(θ)eimϕ (2.99)

where X`m(θ) is some yet unknown function.
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F For m = 0 the second differential equation reads

− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
X`0(θ) = `(`+ 1)X`0(θ) (2.100)

Change variables
ξ = cos θ and P`(ξ) = X`0(θ) (2.101)

leading to the equation

Legendre’s diff. eq.: − d

dξ
(1− ξ2)

d

dξ
P`(ξ) = `(`+ 1)P`(ξ) (2.102)

P0(ξ) = 1

P1(ξ) = ξ

P2(ξ) = 1
2(3ξ2 − 1)

P3(ξ) = 1
2(5ξ3 − 3ξ)

P4(ξ) = 1
8(35ξ4 − 30ξ2 + 3)

P5(ξ) = 1
8(63ξ5 − 70ξ3 + 15ξ)

· · ·

I For the spherical harmonics with m 6= 0 we can use the raising and lowering
operators.

Let us construct the complete basis of spherical harmonics for the standard irrep
corresponding to ` = 1:

• For m = 0 we have
Y1,0(θ, ϕ) = N cos θ , (2.103)

with the normalization constant determined by the orthogonality relation, i.e.

1 = |N |2
∫ 2π

0

dϕ

∫ +1

−1

d cos θ cos2 θ = 4π|N |2/3 (2.104)

leading to the conventional choice N =
√

3/4π. Therefore,

Y1,0(θ, ϕ) =

√
3

4π
cos θ . (2.105)
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• For m = +1 we get

√
2Y1,+1(θ, ϕ) =d̂(L+)Y1,0(θ, ϕ) = eiϕ

(
i cot θ

∂

∂ϕ
+

∂

∂θ

)√
3

4π
cos θ

=− eiϕ
√

3

4π
sin θ

(2.106)

leading to

Y1,+1(θ, ϕ) = −
√

3

8π
eiϕ sin θ (2.107)

• For m = −1 we get

√
2Y1,−1(θ, ϕ) =d̂(L−)Y1,0(θ, ϕ) = e−iϕ

(
i cot θ

∂

∂ϕ
− ∂

∂θ

)√
3

4π
cos θ

=

√
3

4π
e−iϕ sin θ

(2.108)

leading to the solution

Y1,−1(θ, ϕ) =

√
3

8π
e−iϕ sin θ (2.109)



Chapter 3

2π 6= 4π !
Unitary group in 2 dimensions

We look at one of the most common groups in Physics: SU(2). We look at the

group definition, Lie algebra, its relation with the group of rotations in 3D.

We build the irreducible representations and study the product space of irreps

in SU(2)

3.1 The SU(2) group

I The special unitary group SU(2) is defined as

SU(2) :=
{
g ∈ GL(2;C)| gg† = I2 , det(g) = 1

}
(3.1)

The most general form of a unitary matrix in two dimensions is given by

U(a, b) =

a∗ −b∗
b a

 , a, b ∈ C . (3.2)

and |a|2 + |b|2 = 1 .
A convenient parametrization of a unitary 2 × 2 matrices is by means of the

Cayley-Klein parameters ξ0,1,2,3.

F These parameters are related with a and b, i.e.

a = ξ0 + iξ3 and b = ξ2 − iξ1 . (3.3)

F The Unitary matrix can then be written as

U(ξ0, ~ξ) = ξ0I− i~ξ.~σ , (3.4)

35



36

with σi the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (3.5)

F Since U(ξ0, ~ξ) is unimodular we have

det(U) = (ξ0)
2 + (ξ1)

2 + (ξ2)
2 + (ξ3)

2 = 1 . (3.6)

Therefore, we only have 3 free parameters to describe a 2 × 2 unimodular
unitary matrix.

F Combine the 3 parameters ni into a vector ~n

~n =


n1

n2

n3

 . (3.7)

F One might select the Cayley-Klein parameters as

ξ0 = cos
ϕ

2
and ~ξ = n̂ sin

ϕ

2
(3.8)

with

n̂ =
1

n
~n and ϕ ≡ n =

√
(n1)2 + (n2)2 + (n3)2 . (3.9)

F We then find the axis-angle parametrization

U(n̂, ϕ) =I cos
ϕ

2
− i(n̂.~σ) sin

ϕ

2

=

cos ϕ
2 − in̂3 sin ϕ

2 −(n̂2 + in̂1) sin ϕ
2

(n̂2 − in̂1) sin ϕ
2 cos ϕ

2 + in̂3 sin ϕ
2


The Pauli matrices follow the following relations

• The product
σiσj = Iδij + iεijkσk . (3.10)

• The commutator
[σi, σj] = 2iεijkσk (3.11)

as seen from the product

• The anti-commutator

{σi, σj} = σiσj + σjσi = 2δijI . (3.12)

as seen from the product
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3.2 The su(2) algebra

I The group of special unitary transformations in two dimensions, i.e. SU(2),
is a Lie group. This can be easily understood if one considers the exponential
representation, i.e.

exp[αiXi] ∈ SU(2) if Xi ∈ su(2) . (3.13)

then

exp[αiXi]
†exp[αiXi] = (I + αiX†i + · · · )(I + αiXi + · · · ) = I ⇒ X†i +Xi = 0

Therefore
(3.14)

I A basis for su(2) is given by the matrices sj = − i
2σj

s1 = −1

2

0 i

i 0

 , s2 = −1

2

 0 1

−1 0

 , s3 = −1

2

i 0

0 −i


su(2) = spanR{s1, s2, s3}

elements of the su(2) algebra are real linear combinations of si.

I In a similar ways to what we have done for the SO(3) group, we can parameterize
the group in terms of 3 rotations. The Euler parametrization is then given by

U(α, β, γ) =exp[αs3]exp[βs2]exp[γs3]

=

e− i
2 (α+γ) cos β

2 −e
i
2 (α−γ) sin β

2

e−
i
2 (α−γ) sin β

2 e
i
2 (α+γ) cos β

2


α ∈ [0, 2π[ , β ∈ [0, π] , γ ∈ [0, 4π[

Instead of using the anti-hermitian matrices si, we can use space of traceless
hermitian matrices

H2 :=
{
X ∈ C2×2|X† −X = 0 , Tr(X) = 0

}
= spanR{σ1, σ2, σ2} (3.15)

Therefore, for this choice we

F The generators of su(2) to be

J1 =
σ1

2
, J2 =

σ2

2
and J3 =

σ3

2
(3.16)

F The arbitrary special unitary transformation U(~n = αn̂) in two dimensions
may be written as

U(n̂, α) = e−iαn̂.
~J (3.17)
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F The commutation relation is

[Ji, Jj] = iεijkJk (3.18)

F The commutation relation of the SU(2) generators ~J are identical to the com-

mutation relations of the SO(3) generators ~L. Both generators are traceless
and hermitian.

I We can regard H2, the space of hermitian 2 × 2 matrices, as a real three-
dimensional vector space by considering the isomorphism

f : R3 → H2

f(êi) = σi
(3.19)

In this way, we can think of any 2× 2 hermitian matrix X as a real vector ~x

~x = xiêi −→ X = f(~x) = xiσi (3.20)

I On this linear space we define the scalar product to be

X .Z :=
1

2
Tr(XZ)

3.3 Relation between SU(2) and SO(3)∣∣∣∣∣∣∣∣∣∣∣∣

Theorem:

To rotate a vector X in H2, we can use a 2× 2 unitary matrix U ∈ SU(2) in the

following way

X → UXU †

We prove this theorem by considering the scalar product

X .Z :=
1

2
Tr(XZ)

=
1

2
Tr (σiσj)x

izj =
1

2
(2δij)x

izj = xizi

which defines the concept of an angle on H2. And also show that

F UXU † is still an element of H2

hermitian: (UXU †)† = UXU † ,
Traceless: Tr(UXU †) = Tr(XU †U) = Tr(X ) = 0
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F The mapping X → UXU † is isometric (conserves length)

(UXU †).(UZU †) =
1

2
Tr(UXU †UZU †) =

1

2
Tr(XZ) = X .Z

I A transformation U(n̂, α) ∈ SU(2) is given by

U(n̂, α) =exp

[
− i

2
αn̂kσk

]
= I cos

α

2
− in̂kσk sin

α

2

=

 cos α
2 − in̂

3 sin α
2 −(in̂1 + n̂2) sin α

2

−(in̂1 − n̂2) sin α
2 cos α

2 + in̂3 sin α
2

 (3.21)

I Let us now consider a rotation α around the z-axis of H2 (i.e. n̂3 = 1, n̂1 = n̂2 = 0,
the σ3-axis)

UXU † ≡U(ẑ, α)XU(ẑ, α)† = U(ẑ, α)XU(ẑ,−α)

=

e− iα2 0

0 e
iα
2

 (xσ1 + yσ2 + zσ3)

e iα2 0

0 e−
iα
2


=x

 0 e−iα

eiα 0

+ iy

 0 −e−iα

eiα 0

+ z

1 0

0 −1


=(x cosα− y sinα)σ1 + (x sinα + y cosα)σ2 + zσ3

I We see that rotating X ∈ H2 around the σ3-axis using U ∈ SU(2)

X → UXU †


x

y

z

→

x cosα− y sinα

x sinα + y cosα

z

 (3.22)

is identical to rotating ~x ∈ R3 around the ê3-axis using R ∈ SO(3)

~x→ R~x


x

y

z

→

x cosα− y sinα

x sinα + y cosα

z

 (3.23)

I We see that the groups SU(2) and SO(3), which may not seem similar at first
sight, are actually quite intimately related.
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We express this relationship concretely in the form of a homomorphism

Φ : SU(2)→ SO(3)

Φ(U)~x := f−1(Uf(~x)U †)

= R~x

I This can be easily visualize in the figure below

∣∣∣∣∣∣∣∣∣∣∣∣

Theorem:

We have for the homormophism Φ : SU(2)→ SO(3) the following properties:

1) Φ is surjective (if every possible image is mapped to by at least one argument)

2) ker Φ = {I,−I} =: Z2

I Because of 2), we see that Φ is not injective. In fact

Φ(−U)~x = f−1(−Uf(~x)(−U)†) = f−1(Uf(~x)U †) = Φ(U)~x = R~x
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That is, every element R ∈ SO(3) is mapped by two elements of SU(2)

Φ−1(R) = {U,−U} . (two-fold covering) (3.24)

I Form the first isomorphism theorem for algebras we get

SU(2)/Z2
∼= SO(3) (3.25)

I Although SU(2) and SO(3) are not globally isomorphic, they are locally isomor-
phic. SU(2) is the universal covering group of SO(3), or the double-cover.

I Comparing the two rotation matrices R(ϕ, n̂) for SO(3) and U(ϕ, n̂) for SU(2) we
see that

R(2π, n̂) = I3 while U(2π, n̂) = −I
Only after 4π does U(ϕ, n̂) returns to the same point, during this time R(ϕ, n̂) has
covered the points twice.
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3.4 The subgroup U(1)

I The matrices U(ẑ, α) form a subgroup U(1) of SU(2), because of the following
property

U(α2, ẑ)U(α1, ẑ) = U(α1 + α2, ẑ) , U(α, ẑ) =

e− i
2α 0

0 e
i
2α

 (3.26)

At the subspace spanned by the vector ê1 =

1

0

, U(α, ẑ) is represented by

U(α, ẑ)ê1 = e−
i
2αê1 so D(U(ẑ, α)) = e−

i
2α (3.27)

I Other 1D representations may be given by

D(m)(α, U(ẑ)) = e−imα (3.28)

Since only 4π angles bring us back to the unit we have

U(4π, ẑ) = I ⇒ e−im4π = 1 . (3.29)

which can be solved for the values

m = 0,±1

2
,±1,±3

2
,±2, · · · . (3.30)

3.5 The (2j + 1)-dimensional irrep

I Since SU(2) generators ~J and SO(3) generators ~L satisfy the same commutation
relations, the structure of the Lie-algebras for the two groups is the same.

We can repeat the construction of irreps followed for SO(3). However, there is
one important difference:

• In SO(3), because m is an integer, only odd values (2` + 1) for the irrep
dimension are possible.

• For SU(2), because j can be half-integer, also even (2j+ 1) dimensional irreps
are possible.

F The irreps of SU(2) are characterized by the parameter j

j = 0,
1

2
, 1,

3

2
, 2, · · · (3.31)
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F The (2j+1)-dimensional irrep of the Lie-algebra of SU(2), d(j), is characterized
by the (2j + 1) orthogonal basis vectors

|j, j〉 , |j, j − 1〉 , · · · , |j,−j + 1〉 , |j,−j〉 (3.32)

F The basis is chosen such that J3 is represented by the diagonal, i.e.

d(j)(J3) |j,m〉 = m |j,m〉 . (3.33)

F The raising and lowering operators J± as defined as

J± = J1 ± iJ2 . (3.34)

F For the (2j + 1)-dimensional irrep d(j) they are represented by

d(j)(J±) |j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 . (3.35)

F The Casimir operator, J2, is defined by

J2 =
(
d(j)(J1)

)2

+
(
d(j)(J2)

)2

+
(
d(j)(J3)

)2

(3.36)

with eigenvalues
J2 |j,m〉 = j(j + 1) |j,m〉 . (3.37)

Besides allowing for more possible irreps for SU(2), the representations have
the same structure as the representations of SO(3).

I Therefore the general representation for the Ji are

d(j)(J1)
m′

m =
1

2

(√
j(j + 1)−m(m+ 1)δm

′

m+1 +
√
j(j + 1)−m(m− 1)δm

′

m−1

)
d(j)(J2)

m′

m =
1

2i

(√
j(j + 1)−m(m+ 1)δm

′

m+1 −
√
j(j + 1)−m(m− 1)δm

′

m−1

)
d(j)(J3)

m′

m =mδm
′

m

I The two-dimensional irrep

• For j = 1/2 one has the two-dimensional irrep d(1/2) of the Lie-algebra of
SU(2).

• We denote the basis vectors by∣∣∣∣12 , 1

2

〉
=

1

0

 and

∣∣∣∣12 ,−1

2

〉
=

0

1

 (3.38)
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• The generator J3 is in this basis represented by a diagonal matrix. Its eigen-
values are indicated in the notation used for the basis vectors, i.e. ±1/2.
Thus

d(1/2)(J3) =
1

2

1 0

0 −1

 =
σ3

2
(3.39)

• For the raising and lowering operators we get

d(1/2)(J+)

∣∣∣∣12 , 1

2

〉
=0

d(1/2)(J+)

∣∣∣∣12 ,−1

2

〉
=

∣∣∣∣12 , 1

2

〉
d(1/2)(J−)

∣∣∣∣12 ,+1

2

〉
=

∣∣∣∣12 ,−1

2

〉
d(1/2)(J−)

∣∣∣∣12 ,−1

2

〉
=0

(3.40)

Leading to the following matrix representations (note that we get this from
the above equation)

d(1/2)(J+) =

0 1

0 0

 =
1

2
(σ1 + iσ2) and d(1/2)(J−) =

0 0

1 0

 =
1

2
(σ1− iσ2)

(3.41)

• This leads to the matrix representation

d(1/2)(J1) =
σ1

2
and d(1/2)(J2) =

σ2

2
. (3.42)

• The Casimir operator is J2 = 3
4I, which agrees with

J2

∣∣∣∣12 ,m
〉

=
1

2

(
1

2
+ 1

) ∣∣∣∣12 ,m
〉

=
3

4

∣∣∣∣12 ,m
〉

(3.43)

• The matrices of the representation d(1/2) are exactly the same as the matrices
of the definition of the Lie-algebra of SU(2).

I The three-dimensional irrep.

• For j = 1 one has the three-dimensional irrep d(1) of SU(2)
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• The basis vectors are given by

|1, 1〉 =


1

0

0

 , |1, 0〉 =


0

1

0

 , |1,−1〉 =


0

0

1

 (3.44)

• The generator J3 is represented by

d(1)(J3) =


1 0 0

0 0 0

0 0 −1

 (3.45)

s.t. d(1)(J3) |`,m〉 = m |`,m〉

• The raising and lowering operators have the matrix representation

d(1)(J+) =
√

2


0 1 0

0 0 1

0 0 0

 and d(1)(J−) =
√

2


0 0 0

1 0 0

0 1 0

 (3.46)

Note: these matrices are exactly equal to the corresponding matrices used in
SO(3).

• The representation of the group elements U(n̂, α) of SU(2) is given by

D(1)(U(n̂, α)) = e−iαn̂.d
(1)( ~J) (3.47)

• For example for U(ẑ, α) we have

D(1)(U(ẑ, α)) =


e−iα 0 0

0 1 0

0 0 eiα

 (3.48)

The group elements U(ẑ, α) and U(ẑ, α + 2π) from (3.21) are not equal, but
their representations are. The representation D1 is therefore not faithful. This
is true for all odd dimensions.

• The reason is that there are always two different group elements U(n̂, α) and
U(n̂, α + 2π) which corresponds to one rotation R(n̂, α) in R3 and that the
odd dimensional irreps are equivalent for SO(3) and SU(2).

• The Casimir operator is

J2 = (J3)
2 + J3 + J−J+ = 2I . (3.49)
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3.6 A short note on sl(2,C)
One small but vital detail that is often left out in many physics-oriented texts is the
consideration of the Lie algebra sl(2,C):

sl(2,C) := {X ∈ C2×2
∣∣ Tr(X) = 0} (3.50)

which is the Lie algebra of the Lie group SL(2,C).

I This algebra is naturally a vector space over the complex numbers as traceless
matrices remain traceless by multiplication by a complex number. The algebra is
therefore a complex Lie algebra.

I We can choose as a basis of generators

J+ =

0 1

0 0

 , J− =

0 0

1 0

 , J̃3 =

1 0

0 −1


J̃3 is not exactly the same as J3 defined before, there is a overall 1/2 factor difference.
The Lie product gives

[J+, J−] = J3 , [J3, J±] = ±2J± .

I Even though the algebra is complex we can easily get a real algebra since the
commutator of the algebra elements have only real numbers.

IWe can declare the vector space to be real and say that the abstract basis vectors
(J+, J−, J3) have the commutation relation given above. This defines a real Lie
algebra. More concretely we can define the real algebra sl(2,R) of traceless 2 × 2
real matrices (naturally a real vector space).

I There is another way to construct another real algebra from sl(2,C). As we
have seen before, we can write the raising/lowering operators as a function of anti-
hermitian matrices si, i.e.

sl(2,C) := {X ∈ C2×2
∣∣ X = αisi , αi ∈ C} ≡ spanC{si}3

i=1 (3.51)

with

s1 =
−i
2

(J+ + J−) , s2 =
1

2
(J− − J+) , s3 =

−i
2
J̃3 .

and
[si, sj] = εijksk
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I Declaring the sk to be basis vector of a real vector space we get the familiar su(2)
algebra, described as the algebra of 2× 2 anit-hermitian matrices

su(2) = spanR{si}3
i=1

Any representation T of sl(2,C) is also a representation of su(2); all we need to do
is restrict the domain of T .

F This is why we used the ladder operators to construct irreps in so(3) (which is
isomorphic to su(2)), even though they did not belong to the so(3) Lie algebra.

F The ladder operators belong to the complexified algebra sl(2,C). Therefore,
we where secretly working with this algebra the whole time.

F Although the matrices have complex entries, the vector space is naturally real,
complex multiplication would ruin anti-hermiticity.

F The real algebras sl(2,R) and su(2) are not isomorphic over the real, they are
the two real forms associated with sl(2,C).
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3.7 The direct product space

Direct product

Given a m× n matrix A and a p× q matrix B, their direct product (tensor
product, Kronecker product) A ⊗ B is a matrix with dimensions mp × nq and
amounts to:

Replacing Aij by the matrix AijB.

I We are interested in looking at the product of irreducible representations. Those
are obtained using the tensor product of the representations, i.e. D = D1 ⊗D2.

I As an example, we select here the product space D(1/2)⊗D(1). The basis vectors
of this space are defined as∣∣∣∣12 , 1

2

〉
⊗ |1,m〉 =

|1,m〉
~0

 and

∣∣∣∣12 ,−1

2

〉
⊗ |1,m〉 =

 ~0

|1,m〉

 . (3.52)

in a more explicit way

∣∣∣∣12 , 1

2

〉
⊗ |1, 1〉 = ê1 =



1

0

0

0

0

0


,

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 = ê2 =



0

1

0

0

0

0


, (3.53)

∣∣∣∣12 , 1

2

〉
⊗ |1,−1〉 = ê3 =



0

0

1

0

0

0


,

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉 = ê4 =



0

0

0

1

0

0


, (3.54)
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∣∣∣∣12 ,−1

2

〉
⊗ |1, 0〉 = ê5 =



0

0

0

0

1

0


,

∣∣∣∣12 ,−1

2

〉
⊗ |1,−1〉 = ê6 =



0

0

0

0

0

1


(3.55)

Using the matrix representations D(1/2)(U(~n)) and D(1)(U(~n)) of a group element
U(~n) ∈ SU(2) (in the basis previously defined), we let U(~n) in the product space
D(1/2) ⊗D(1) be represented by

D(U(~n)) =

[D(1/2)(U(~n))]11D
(1)(U(~n)) [D(1/2)(U(~n))]12D

(1)(U(~n))

[D(1/2)(U(~n))]21D
(1)(U(~n)) [D(1/2)(U(~n))]22D

(1)(U(~n))

 (3.56)

The above matrix represents a 6× 6 matrix, because D(1)(U(~n)) stands for a 3× 3
matrix.
I The way this matrix acts in the basis vectors is given by

F

D(U(~n))

∣∣∣∣12 , 1

2

〉
⊗ |1,m〉 =D(U(~n))

|1,m〉
~0


=

[D(1/2)(U(~n))]11D
(1)(U(~n)) |1,m〉

[D(1/2)(U(~n))]21D
(1)(U(~n)) |1,m〉


=D(1/2)(U(~n))

1

0

⊗D(1)(U(~n)) |1,m〉

=

{
D(1/2)(U(~n))

∣∣∣∣12 , 1

2

〉}
⊗
{
D(1)(U(~n)) |1,m〉

}
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F

D(U(~n))

∣∣∣∣12 ,−1

2

〉
⊗ |1,m〉 =D(U(~n))

 ~0

|1,m〉


=

[D(1/2)(U(~n))]12D
(1)(U(~n)) |1,m〉

[D(1/2)(U(~n))]22D
(1)(U(~n)) |1,m〉


=D(1/2)(U(~n))

0

1

⊗D(1)(U(~n)) |1,m〉

=

{
D(1/2)(U(~n))

∣∣∣∣12 ,−1

2

〉}
⊗
{
D(1)(U(~n)) |1,m〉

}
I As is known from theorem 9 in the discrete part of this course (or the gray text
above) the product state transforms according to the direct product representation.

D(U(~n)) = D(1/2)(U(~n))⊗D(1)(U(~n))

=⇒ (3.57)

e−i~n.d( ~J) = e−i~n·d
(1/2)( ~J) ⊗ e−i~n·d(1)( ~J)

I Differentiating we find for the generators of the direct product space

d(Ji) =i
∂D(U(~n))

∂ni

∣∣∣∣
~n=0

= i

[
∂D(1/2)(U(~n))

∂ni

∣∣∣∣
~n=0

]
⊗D(1)(U(~n = 0))

+iD(1/2)(U(~n = 0))⊗
[
∂D(1)(U(~n))

∂ni

∣∣∣∣
~n=0

]
=d(1/2)(Ji)⊗ I3 + I2 ⊗ d(1)(Ji)

(3.58)

I In general the representation d(A) in the product spaceD(1/2)⊗D(1) of an arbitrary
element X of the Lie-algebra su(2) is given by the following transformation rule

d(X)

∣∣∣∣12 ,m1

〉
⊗|1,m2〉 =

[
d(1/2)(X)

∣∣∣∣12 ,m1

〉]
⊗|1,m2〉+

∣∣∣∣12 ,m1

〉
⊗
[
d(1)(X) |1,m2〉

]

Generalizations

In general, a tensor product between Lie group representations is defined by(
D1 ⊗D2

)
(t) |ψ1〉 ⊗ |ψ2〉 := D1(t) |ψ1〉 ⊗D2(t) |ψ2〉 (3.59)

For the Lie algebra representations we have(
d1 ⊗ d2

)
(X) |ψ1〉 ⊗ |ψ2〉 := d1(X) |ψ1〉 ⊗ |ψ2〉+ |ψ1〉 ⊗ d2(X) |ψ2〉 (3.60)
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I The proof is by differentiating, as for the special case above.

I Since both d(1/2)(J3) and d(1)(J3) change the state on which they are acting only
by multiplying with m, the operator d(J3) is also diagonal with eigenvalues m1 +m2

d(J3)

[∣∣∣∣12 ,m1

〉
⊗ |1,m2〉

]
= (m1 +m2)

∣∣∣∣12 ,m1

〉
⊗ |1,m2〉 (3.61)

I We call the eigenvalues of J3 weights and we draw what is known as a weight
diagram

−3/2

|12 ,−
1
2 > ⊗|1,−1 >

−1/2

|12 ,−
1
2 > ⊗|1, 0 >

|12 ,
1
2 > ⊗|1,−1 >

1/2

|12 ,−
1
2 > ⊗|1, 1 >

|12 ,
1
2 > ⊗|1, 0 >

3/2

|12 ,
1
2 > ⊗|1, 1 >

m1 +m2

I There exists different eigenvectors of d(J3) with the same eigenvalue. This is an
indication that the representation of SU(2) in the product space D(1/2)⊗D(1) must
be reducible, since the states in an irreducible representation are reached only once
when acting with J±.

I Let us look at the decomposition of the product representation:

F We first determine the matrix representation of J2 in the product space, which
for arbitrary representations neither is proportional to the identity, nor diag-
onal. Diagonalization of J2 leads to another basis of the product space, in
which the matrix representations of the elements of the Lie-algebra have a
block diagonal form.

F Using J2 = [d(J3)]
2 + d(J3) + d(J−)d(J+) and

d(J3) = diagonal[3/2, 1/2,−1/2, 1/2,−1/2,−3/2] (3.62)

(from (3.61) and the basis vectors), we just need to find the representations of
d(J±).
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F For d(J−) we find

d(J−) =d(1/2)(J−)⊗ I3 + I2 ⊗ d(1)(J−)

=

O3 O3

I3 O3

+

d(1)(J−) O3

O3 d(1)(J−)



=



0 0 0 0 0 0
√

2 0 0 0 0 0

0
√

2 0 0 0 0

1 0 0 0 0 0

0 1 0
√

2 0 0

0 0 1 0
√

2 0


For d(J+) we get the transposed matrix.

F We then find for J2

J2 =



15
4 0 0 0 0 0

0 11
4 0

√
2 0 0

0 0 7
4 0

√
2 0

0
√

2 0 7
4 0 0

0 0
√

2 0 11
4 0

0 0 0 0 0 15
4


(3.63)

As expected the matrix is not even diagonal!

F Looking at such a matrix we find that 2 basis vectors out of the 6 êi are
eigenvectors of J2, i.e.

J2ê1,6 =
15

4
ê1,6 =

15

4

∣∣∣∣12 ,±1

2

〉
⊗ |1,±1〉

=
3

2

(
3

2
+ 1

) ∣∣∣∣32 ,±3

2

〉
fitting with d(J3) = ±3

2

(3.64)

F Note that the “highest” state will only appear once

IWe now might search for other eigenvectors of J2. A more elegant way is to start
from one basis vector and construct the complete basis for an irrep by repeatedly
applying the raising or lowering operator.
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F Let us start with
∣∣3

2 ,
3
2

〉
4

(the 〉4 is there since we know there will be 4 states
with m = 3/2, 1/2,−1/2,−3/2) and apply the lowering operator

d(3/2)(J−)

∣∣∣∣32 , 3

2

〉
4

=

√
3

2

(
3

2
+ 1

)
− 3

2

(
3

2
− 1

) ∣∣∣∣32 , 1

2

〉
4

=
√

3

∣∣∣∣32 , 1

2

〉
4

(3.65)
Applying d(J−) to the product vector we get

d(J−)

[∣∣∣∣12 , 1

2

〉
⊗ |1, 1〉

]
=

(
d(1/2)(J−)

∣∣∣∣12 , 1

2

〉)
⊗ |1, 1〉+

∣∣∣∣12 , 1

2

〉
⊗
(
d(1)(J−) |1, 1〉

)
=

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉+

√
2

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉

Therefore, we identify∣∣∣∣32 , 1

2

〉
4

=

√
1

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉+

√
2

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 (3.66)

The eigenvalue of d(J3) for the vector on the right-hand side is 1/2. Using the
matrix representation of J2 we find that this eigenvector has eigenvalue 15/4
as expected.

F We apply d(3/2)(J−) (left) and d(J−) (right) once more and get

d(3/2)(J−)

∣∣∣∣32 , 1

2

〉
4

= d(J−)

[√
1

3

∣∣∣∣12 ,−1

2

〉
⊕ |1, 1〉+

√
2

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉

]

⇔
∣∣∣∣32 ,−1

2

〉
4

=

√
2

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 0〉+

1√
3

∣∣∣∣12 , 1

2

〉
⊗ |1,−1〉

(3.67)

F Therefore, using the lowering operator we have found the basis of a 4 dimen-
sional irrep of SU(2) (j = 3/2)

ê′1 =

∣∣∣∣32 , 3

2

〉
4

=

∣∣∣∣12 , 1

2

〉
⊗ |1, 1〉

ê′2 =

∣∣∣∣32 , 1

2

〉
4

=

√
1

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉+

√
2

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉

ê′3 =

∣∣∣∣32 ,−1

2

〉
4

=

√
2

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 0〉+

1√
3

∣∣∣∣12 , 1

2

〉
⊗ |1,−1〉

ê′4 =

∣∣∣∣32 ,−3

2

〉
4

=

∣∣∣∣12 ,−1

2

〉
⊗ |1,−1〉

(3.68)
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F We are then left with a subspace of the product space with dimension 6-4=2.
So we have (at most) j = 1/2. The basis vectors that have d(J3) = 1/2 are∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 and

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉 . (3.69)

The 4-plet has one combination of such vectors, therefore we must find the
orthogonal one, i.e.

4

〈
3

2
,
1

2

∣∣∣∣ [a ∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉+ b

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉

]
= 0

⇔a
√

2

3
+ b

√
1

3
= 0 ⇒︸︷︷︸

(normalizing)

 a =
√

1
3

b = −
√

2
3

(3.70)

Therefore ∣∣∣∣12 , 1

2

〉
2

=

√
1

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 −

√
2

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉 (3.71)

This this is an eigenvector of J2 with eigenvalue 3/4.

F Applying the lowering operator to this basis vector we get

d(1/2)(J−)

∣∣∣∣12 , 1

2

〉
2

= d(J−)

[√
1

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 −

√
2

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉

]

⇔
∣∣∣∣12 ,−1

2

〉
2

=

√
2

3

∣∣∣∣12 , 1

2

〉
⊗ |1,−1〉 −

√
1

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 0〉

(3.72)

F Therefore, we find the new basis for the doublet irrep

ê′5 =

∣∣∣∣12 , 1

2

〉
2

=

√
1

3

∣∣∣∣12 , 1

2

〉
⊗ |1, 0〉 −

√
2

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 1〉

ê′6 =

∣∣∣∣12 ,−1

2

〉
2

=

√
2

3

∣∣∣∣12 , 1

2

〉
⊗ |1,−1〉 −

√
1

3

∣∣∣∣12 ,−1

2

〉
⊗ |1, 0〉

(3.73)

F In this new vector basis, i.e. ê′i, the matrix representation of all elements of
the algebra and hence of the group (by exponentiating) are matrices of the
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form of a direct sum of a 4× 4 matrix (d(3/2)) and a 2× 2 (d(1/2)), i.e.

d′(O) =

d(3/2)(O) 0

0 d(1/2)(O)

 , J2 =

15
4 I4 0

0 3
4I2


=

J2(j = 3
2) 0

0 J2(j = 1
2)

 (3.74)

and

D′(U) =

D3/2(U) 0

0 D(1/2)(U)

 ,

D′ = D(1/2) ⊗D(1) = D(3/2) ⊕D(1/2)

2⊗ 3 = 4⊕ 2

(3.75)

Generalizations

The tensor product of irreducible representations can be expanded as a direct
sum of irreducible representations

D(j1) ⊗D(j2) =
⊕
j

cjD
(j) (3.76)

where cj represent the multiplicity of that representation. This is called the Clebsch-
Gordan series.

I We can use the graphical representation in order to find the direct products of
representations. Take two SU(2) representations, one with j and the other with
j′. The product of such representations will give us a representation that is (2j +
1)(2j′ + 1) dimensional, but reducible. Since the total m will be the sum m1 + m2

we can find the possible states by the following steps:

• We draw first the j weight diagram (see figure below)

• We then draw repeatedly the j′ diagram so it has its center appearing in each
point of the j diagram
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−1 0 +1

j = 1

j′ = 3
2

j′ = 3
2

j′ = 3
2

m+m′

[1]⊗ [3/2]

3⊗ 4

Reducible

The m + m′ value 5/2 appears once, 3/2 twice, and so on. Preserving the number
of points and the values, we arrange the points in a symmetric way as multiplets
on different levels

[5
2 ]

[3
2 ]

[1
2 ]

Which again has one 5/2, two 3/2, and so on. We thus have found the Clebsch-
Gordan series:

[1]⊗ [3/2] = [5/2]⊕ [3/2]⊕ [1/2] (3.77)

This tells us what states to expect, but it does not give us the reduced basis. Also,
note that the dimension counting works: 3× 4 = 6 + 4 + 2.
I For the tensor product of two irreducible representations D(j1) and D(j2) of SU(2)
(or SO(3) for j ∈ N) we have the following decomposition

D(j1) ⊗D(j2) =

j1+j2⊕
j=|j1−j2|

D(j) (3.78)

in unit steps.
I To show this we can use the characters of the representations:
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F We use the fact that the character of a direct product of representations is the
product of the characters of the individual representations (theorem 8 in the
discrete part of this course)

χ(j1)(D(j1)(ẑ, α))χ(j2)(D(j2)(ẑ, α)) =
∑
j

cjχ
(j)(D(j)(ẑ, α)) (3.79)

where cj is the number of times rep. j appear. We show below that cj is 1.

F For an individual representation we have

χj(D(j)(ẑ,α)) =

j∑
m=−j

e−imα =

j∑
m=0

e−imα +

j∑
m=0

eimα − 1

=
1− e−iα(j+1)

1− e−iα
+

1− eiα(j+1)

1− eiα
− 1

=
eiα/2 − e−iα(j+1/2)

eiα/2 − e−iα/2
+
e−iα/2 − eiα(j+1/2)

e−iα/2 − eiα/2
− 1

=
eiα(j+1/2) − e−iα(j+1/2)

eiα/2 − e−iα/2
=

sinα(1
2 + j)

sin α
2

F Taking j1 ≥ j2 (no loss of generality)

χ(j1)(D(j1)(ẑ, α))χ(j2)(D(j2)(ẑ, α)) =

[
j1∑

m=−j1

e−imα

][
j2∑

m=−j2

e−imα

]

=
ei(j1+1/2)α − e−i(j1+1/2)α

2i sinα/2

[
j2∑

m=−j2

e−imα

]

=
1

2i sin α
2

j2∑
m=−j2

(
ei(j1+m+ 1

2 )α − e−i(j1−m+ 1
2 )α
)

F Since the sum over m is symmetric we can change the sign of m in the second
term, we get

χ(j1)(D(j1)(ẑ, α))χ(j2)(D(j2)(ẑ, α)) =
1

2i sin α
2

j2∑
m=−j2

(
ei(j1+m+ 1

2 )α − e−i(j1+m+ 1
2 )α
)

=
1

2i sin α
2

j1+j2∑
j=j1−j2

(
ei(j+

1
2 )α − e−i(j+

1
2 )α
)

=

j1+j2∑
j=j1−j2

sin(j + 1
2)α

sin α
2

≡
j1+j2∑
j=j1−j2

χ(j)(D(j)(ẑ, α))
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F Therefore, cj = 1. The only difference between SO(3) and SU(2) in this proof
is in j being only integer or also half-integer, respectively.

I The procedure of working out the irreducible representations of the product rep-
resentations can be summarized as follows:

(1) Start with the combination of states with the largest m, i.e. the eigenstate of
d(j1+j2)(J3) with eigenvalue j1 + j2 (|j1 + j2, j1 + j2〉);

(2) Use the lowering operator d(j1+j2)(J−) to get all the other states in the same
irreducible representation.

(3) Find the orthogonal combination to |j1 + j2, j1 + j2 − 1〉. This will now be the
state |j1 + j2 − 1, j1 + j2 − 1〉. Then use the lowering operator to reach the
other j1 + j2 − 1 states.

(4) Repeat these steps until you reach the state ||j1 − j2|, ·〉.

I Although we can reduce D(j1) ⊗ D(j2) into irreducible components
⊕

D(j), we
still need to find an appropriate basis in order to express these matrices in a block
diagonal form. We did this for a particular example in SU(2).

I The general identification between the basis vectors of the product space and the
basis vectors of the final product irreps is given by the following theorem

∣∣∣∣∣∣∣∣∣∣∣∣

Theorem:

The two bases |j,m〉 and |j1,m1〉 ⊗ |j2,m2〉 are related by:

|j,m〉 =
∑

m1m2
Cj1j2j
m1m2m

|j1,m1〉 ⊗ |j2,m2〉 =
∑

m1m2
Cj1j2j
m1m2m

|j1,m1; j2,m2〉

The coefficients Cj1j2j
m1m2m

are called Clebsch-Gordan coefficients.

I The CG coefficients can be determined through the use of the orthogonality of
|ji,mi〉, i.e.

Cj1j2j
m1m2m

= 〈j1,m1; j2,m2 |j,m〉 (3.80)

Since both bases {|j,m〉} and {|j1,m1〉⊗ |j2,m2〉} are orthonormal by construction,
the transformation in Eq. (3.80) must be unitary, and its inverse is

|j1,m1; j2,m2〉 =

j1+j2∑
j=|j1−j2|

j∑
m=−j

|j,m〉 〈j,m| j1,m1; j2,m2〉 (3.81)
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For a variety of historical reasons, these coefficients can also be written as

Cj1j2j
m1m2m

=(j1, j2;m1,m2|j,m) (I will use this!)

=(j, j1, j2|m,m1,m2)

=(−1)j1−j2+m
√

2j + 1

 j1 j2 j

m1 m2 −m


In our previous example of 2 ⊗ 3 = 4 ⊕ 2 we had the following Clebsch-Gordan
coefficients

F 4-plet (
∣∣3

2 ,m
〉
) F 2-plet (

∣∣1
2 ,m

〉
)

(
1
2 , 1; 1

2 , 1
∣∣3

2 ,
3
2

)
= 1

(
1
2 , 1; 1

2 , 0
∣∣1

2 ,
1
2

)
=
√

1
3(

1
2 , 1;−1

2 , 1
∣∣3

2 ,
1
2

)
=
√

1
3

(
1
2 , 1;−1

2 , 1
∣∣1

2 ,
1
2

)
= −

√
2
3(

1
2 , 1; 1

2 , 0
∣∣3

2 ,
1
2

)
=
√

2
3

(
1
2 , 1; 1

2 ,−1
∣∣1

2 ,−
1
2

)
=
√

2
3(

1
2 , 1;−1

2 , 0
∣∣3

2 ,−
1
2

)
=
√

2
3

(
1
2 , 1;−1

2 , 0
∣∣1

2 ,−
1
2

)
= −

√
1
3(

1
2 , 1; 1

2 ,−1
∣∣3

2 ,−
1
2

)
=
√

1
3(

1
2 , 1;−1

2 ,−1
∣∣3

2 ,−
3
2

)
= 1

There are many general expressions for the CG coefficients, non of them is easy.
The one due to Van der Waerden is the most symmetric one. Its derivation is highly
non-trivial, and I will not even try to derive the result

〈jm| j1m1; j2m2 〉 = δm,m1+m2
∆(j1, j2, j)

×
∑
t

(−1)t
[(2j + 1)(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!]1/2

t!(j1 + j2 − j − t)!(j1 −m1 − t)!(j2 +m2 − t)!

× 1

(j − j2 +m1 + t)!(j − j1 −m2 + t)!
(3.82)

where

∆(j1, j2, j) =

[
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!

]1/2

(3.83)

and the sum runs over all values of t that do not lead to negative factorials. This
expressions are valid for integer and half-integer indices (i.e. can be used for SO(3)
and SU(2)).
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3.8 The reality property of SU(2) representations

I Given a Lie algebra
[Ta, Tb] = cabcTc,

the representation T̄a = −T Ta also satisfies the Lie algebra. To see this, we transpose
the above equation

[Ta, Tb]
T = cabcT

T
c ⇔ −[T Ta , T

T
b ] = cabcT

T
c ⇔ [(−T Ta ), (−T Tb )] = cabc(−T Tc )

For anti-hermitian generators, Ta, we get T̄a = T ∗a since T †a = T ∗Ta = −Ta =⇒ T Ta =
−T ∗a .
I If we make the physicist choice, hermitian generators, like we did in SO(3) and
SU(2), the algebra equation has a factor i

[Ta, Tb] = ifabcTc

and conjugating this, we get

[Ta, Tb]
∗ = −ifabcT ∗c ⇔ [T ∗a , T

∗
b ] = ifabc(−T )∗c ⇔ [(−T ∗a ), (−T ∗b )] = ifabc(−T ∗c )

thus T̄a = −T ∗a is also a representation. This corresponds to the complex conjugated
representation since under complex conjugation

e−iαaTa → e+iαaT
∗
a = e−iαa(−Ta)∗ = e−iαaT̄a.

I With the hermitian generator choice, irreducible representations of a Lie algebra
can be classified in three types:

F Real representation T̄a = −(Ta)
∗ = STaS

−1 , with ST = S
In general the representation and the conjugated representation are related by
a symmetric similarity transformation. A special case is of course when all Ta
are real.

F Pseudoreal representation T̄a = −(Ta)
∗ = STaS

−1 , with ST = −S

F Complex representation T̄a = −(Ta)
∗ 6= STaS

−1

I In the case of the SU(2) group we only have real and pseudoreal representations.
For example, for the su(2) algebra we have:

• For j = 1/2 (doublet) the generators are given by

d(1/2)(Ja) =
σa
2

⇒ −
[
d(1/2)(Ja)

]∗
= σ2d

(1/2)(Ja)σ
−1
2 (3.84)

Since σT2 = −σ2 the representation is pseudoreal.
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• For j = 1 (triplet) the generators are given by

d(1)(Ja) =


1√
2


1

1 1

1

 ,
i√
2


−1

1 −1

1

 ,


1

0

−1




⇒ −
[
d(1)(Ja)

]∗
=


1

−1

1

 d(1)(Ja)


1

−1

1


(3.85)

The matrix is symmetric therefore the representation is real.



Chapter 4

The power of the SUN
More details about SU(N) groups and su(N) algebras

4.1 More general concepts

I Simple Lie group: A Lie group is called simple if is not abelian and does not
posses a continuous (hence Lie type) invariant subgroup.
Ex: SU(2), SO(3), SU(N) are simple, whereas U(N) is not.

I Semi-simple Lie group: A Lie group is called semi-simple if is not abelian
and it does not possess a continuous abelian invariant subgroup. It can contain a
continuous invariant subgroup, but not continuous abelian invariant.

I If one can linearly combine M infinitesimal generators Âl (M < N) out of the N

infinitesimal generators Ĝi of a Lie group, such that

[Âl, Âk] ∈ {Âi} (4.1)

the M infinitesimal generators Âl of the invariant subgroup form a subalgebra of
the original Lie algebra. If

[Ĝi, Âk] ∈ {Âl} (4.2)

holds, such a subalgebra is called an invariant subalgebra or an ideal, and the
Lie group processes an invariant subgroup. This can be seen by exponentiating,
using the Baker-Campbell-Hausdorff formula.

I Simple Lie algebra: A Lie algebra g is called simple if it is not abelian and it
does not possess an ideal apart from the null ideal {0} or g.

I Semi-simple Lie algebra: A Lie algebra is called semi-simple if is not abelian
and it does not possess and abelian ideal. Thus (4.2) may hold but not all commu-

tators [Âi, Âj] in (4.1) are allowed to vanish.

62
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I Every semi-simple Lie algebra g is a direct sum of a set of simple Lie algebras,
i.e. there exists a set of invariant simple subalgebras g1, g1, . . . gk such that

g = g1 ⊕ g1 ⊕ · · · ⊕ gk .

This means that every semi-simple Lie group G is the direct product of simple Lie
groups Gi

G = G1 ⊗ G2 ⊗ · · · ⊗ Gk .

A matrix Lie group G is simple (semi-simple) if and only if its Lie algebra

is simple (semi-simple)

I For example: the so(3) algebra is given by

[Li, Lj] = iεijkLk .

There is no smaller set of generators Li that is closed. Therefore, the algebra does
not possess an ideal, it is simple. Consequently, SO(3) is a simple group. The same
applies to SU(2).

4.2 The Lie algebras su(N)

4.2.1 Hermitian matrices

I As is well known Hermiticity is defined as

λ† = λ ←→ λ∗ik = λki

If we have, for example, λ32 = r + is and all other elements zero the matrix reads
0 0 0 0

0 0 r − is

0 r + is 0
...

0 · · · 0

 = r


0 0 0 0

0 0 1

0 1 0
...

0 · · · 0

+ s


0 0 0 0

0 0 −i

0 i 0
...

0 · · · 0


I We then observe that any Hermitian matrix can be constructed by real linear
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combinations of the following basis elements
1 0 0

0 0
...

0 · · · 0

 ,


0 0 0

0 1
...

0 · · · 0

 , · · · ,


0 0 0

0 0
...

0 · · · 1




0 1 0

1 0
...

0 · · · 0

 ,


0 0 1 0

0 0

1
...

0 · · · 0

 , · · · ,


0 0 0

0 0
...

0 1

0 · · · 1 0




0 −i 0

i 0
...

0 · · · 0

 ,


0 0 −i 0

0 0

i
...

0 · · · 0

 , · · · ,


0 0 0

0 0
...

0 −i

0 · · · i 0



(4.3)

The last two lines of elements have only traceless matrices. The total number of
matrices is N 2. We can replace the the first line by the matrices

1 0 0

0 −1
...

0 · · · 0

 ,


0 0 0

0 1

−1
...

0 · · · 0

 , · · · ,


0 0 0

0 0
...

1 0

0 · · · 0 −1

 (4.4)

which are now traceless and reduces the number of matrices to N 2 − 1.

I Returning to the anti-hermitian generators, we note that the matrices of dimension
N form a Lie algebra

a† = −a :

 (αa+ βb)† = −(αa+ βb) linear combinations are anti-hermitian

[a, b]† = −[a, b] commutator is anti-hermitian

It is named u(N) because it generates the Lie group SU(N).

I On one hand, it constitutes a vector space over the field of real numbers. On the
other hand, the matrices of the real matrix algebra u(N) contain complex elements.
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I We can write the anti-hermitian matrices in terms of hermitian matrices

a = − i
2
h with h† = h

I Now we restrict ourselves to anti-hermitian N ×N matrices aa, bs, . . . with van-
ishing traces. Of course, linear combinations of such matrices also have vanishing
traces. Generally, the trace of the commutator of matrices vanishes because of the
cyclic property. This, combined with the anti-hermiticity of the commutator, im-
plies that the commutator stays in the algebra. Every anti-hermitian matrix with
vanishing trace can be formed as a linear combination with real coefficients of the
matrices

ej = − i
2
λj

with λj the traceless hermitian matrices presented before.

I Therefore, the basis elements ej constitute a real Lie algebra, the su(N) algebra.
Sometimes, the hermitian matrices λi are called the generators of su(N). Note,
however, that these do, in principle, not form a Lie algebra, only ei do.

I The Lie algebra su(N) can also be constituted by operators. Their basis elements
êj correspond one-to-one to the basis matrices ej. We define the operators êj by the
equation

êj |ψk〉 =
N∑
l=1

(ej)lk |ψl〉 , (ej)ik = 〈ψi| êj |ψk〉

Since the matrices ej are anti-hermitian, also the operator êj is anti-hermitian. We
can, in a similar way as we did for the matrices, write the anti-hermitian operator
in terms of an hermitian one

êj = − i
2
λ̂j .

For a general operator x̂ we have

x̂ |ψk〉 =
∑
l

Γ(x̂)lk |ψl〉

with Γ(x̂) the matrix representation of the operator x̂.

4.2.2 Structure constants of su(N)

I We have that

[ei, ej] =
n∑
l=1

Ciklel or [λi, λj] =
n∑
l=1

Cikl2iλl . (4.5)

I The scalar Cikl is a structure constant of the real Lie algebra su(N) with basis
elements ei (not λi!), and n is the dimension of the algebra.
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I Because the algebra su(N) is real, the structure constants are real. Otherwise the
right hand side of the commutator of ej’s would not be purely anti-hermitian.

I For the hermitian matrices λi and λk in Eq. (4.3), the following relation holds

Tr (λiλk) = 2δik (4.6)

This relation is true for the diagonal matrices in Eq. (4.4) only when the algebra is
su(2) but for higher su(N) it is not. However, the set of matrices in Eq. (4.4) can
be replaced by a set with the same number of linearly independent matrices which
are real linear combinations of the previous ones and which satisfy the above trace
relation. From now on we use these set of matrices.

I We can find the structure constants using (4.5) by computing

Tr ([λi, λk]λl) = 2i
∑
m

CikmTr(λmλl) = 2i
∑
m

Cikm2δml = 4iCikl

Therefore

Cikl =
1

4i
Tr ([λi, λk]λl) =

1

4i
(Tr(λiλkλl)− Tr(λkλiλl))

I Using the cyclic property of the trace we get

Cikl = −Cilk

i.e. any odd permutation of the indices of Cikl changes the sign. Therefore, Cikl
is totally antisymmetric in all indices. Consequently, no index appears more than
once in a non-vanishing structure constant.

4.2.3 The adjoint matrices and Killing form

I We saw in Sec. 1 that the Jacobi identity, [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, was
one of the conditions in order for the algebra to be a Lie algebra.

I The Jacobi identity is trivially satisfied by the properties of the matrix multiplica-
tion. However, when using it with the Lie algebra commutator result, i.e. the linear
combination of generators, we got a condition for the structure constants (1.10)

0 =
∑
l

(CilmCjkl + CjlmCkil + CklmCijl)

I This is nothing more than a representation of the algebra in disguise. Let us see∑
l

(CilmCjkl + CjlmCkil + CklmCijl) =0∑
l

(CilmCjkl − CjlmCikl − ClkmCijl) =0
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Defining

[adj(ei)]jk = Cikj

we get ∑
l

(adj(ei)mladj(ej)lk − adj(ej)mladj(ei)lk − adj(el)mkCijl) =0(
adj(ei)adj(ej)− adj(ej)adj(ei)−

∑
l

adj(el)Cijl

)
mk

=0

Therefore,

[adj(ei), adj(ej)] =
∑
l

Cijladj(el)

Therefore, the structure constants Cijk themselves form a representation of the Lie
algebra, the regular or adjoint representation. The coefficients (adj(ei))lk are
elements of the n× n matrix adj(ei).

I Therefore, we could have written the general Lie algebra commutation relation as

[ei, ek] =
n∑
l

(adj(ei))lkel

I Consider now the adjoint representation of a general element a in the Lie algebra

[a, ek] =
n∑
l

(adj(a))lkel for i = 1, . . . , n.

From the commutator properties, the following relations hold

Linear: adj(αa+ βb) = αadj(a) + βadj(b)

Commutator: adj([a, b]) = [adj(a), adj(b)]

This tells us that the matrices {adj(a), adj(b), . . .} indeed constitute a representation
of the algebra {a, b, . . .}. When a = ei we get the previous result.

I The Killing form g(a, b) corresponding to any two elements a and b of a Lie
algebra is defined by

g(a, b) = Tr (adj(a)adj(b))

The Killing form is symmetric and bilinear in the elements a and b.

I The Killing form of the basis elements ei and ej of a Lie algebra is

gij = g(ei, ej) =Tr (adj(ei)adj(ej)) =
∑
l

(∑
k

(adj(ei))lk(adj(ej))kl

)
=
∑
lk

CiklCjlk
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This matrix, g, with components gij, is known as the Cartan metric.
I For su(N) algebra, using the orthonormal generators, and the antisymmetry of
Cikl, the Cartan metric is given by

gij = g(ei, ej) = −
n∑

l,k=1

C2
iklδij

I Many of the structural properties of the Lie algebra can be read off from the
Killing form. For example, it provides a criterion for determining if a Lie algebra g
is semi-simple:

F Theorem (Cartan): A Lie algebra g is semi-simple if and only if its Killing
form (in the adjoint representation) is non-degenerate, i.e.

det[g(ei, ej)] 6= 0 .

I Furthermore, a semi-simple Lie algebra is compact if the Killing form in the
adjoint representation is negative definite.

I It is sometimes awkward to work out the Killing form in the adjoint representation
(since this can be quite large). However, for simple Lie algebras, the Killing form,
generalized to other representations, is the same in any representation, up to an
overall proportionality factor.

I For example:

F The su(2) Lie algebra can be generated by the three 2 × 2 anti-hermitian si
matrices. In the adjoint representation [adj(ei)]jk = Cikj = εikj these matrices
take the form

d(1)(s1) =adj(s1) =


0 0 0

0 0 −1

0 1 0

 , d(1)(s2) = adj(s2) =


0 0 1

0 0 0

−1 0 0

 ,

d(1)(s3) =adj(s3) =


0 −1 0

1 0 0

0 0 0

 ,

They can be related to the anti-hermitian versions of the generators in (2.71)
and (2.74) via a similarity transformation. Defining d(1′)(si) = −id(1)(Li), s.t.,
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d(1′)(L1) =
−i√

2


0 1 0

1 0 1

0 1 0

 , d(1′)(L2) =
1√
2


0 1 0

−1 0 1

0 −1 0

 ,

d(1′)(L3) =− i


1 0 0

0 0 0

0 0 −1

 ,

the two representations can be related by a similarity transformation, d(1′)(Li) =
Sd(1)(s1)S

−1 where

S =


1√
2

i√
2

0

0 0 1

− 1√
2

i√
2

0

 .

The adjoint representation of SU(2) and the spin one representation of SO(3)
or SU(2) are thus equivalent.

The Killing form in the adjoint representation gives

g = −2I3

The Killing form is indeed negative definite, thus su(2) ∼= so(3) is a compact
Lie algebra.

We can also evaluate the Killing form for the 2× 2 representation. We get

g2d = −1

2
I3

Therefore, both Killing forms are proportional (with a real factor) as they
should be for simple Lie algebras.
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4.3 Introducing SU(3)

4.3.1 Generators and su(3) algebra

I The SU(3) group is defined by the set of matrices

SU(3) :=
{
g ∈ SL(3;C)| gg† = I3

}
(4.7)

I As seen in the first exercise session, SU(3) is an 8 parameter group ⇒ 8 indepen-
dent generators of the su(3) algebra. (For raising/lowering operators we are secretly
working with sl(3;C).),
I The Gell-Mann representation (λa) of the infinitesimal generators is

T1 =
1

2
λ1 =

1

2

σ1
~0T

~0 0

 , T2 =
1

2
λ2 =

1

2

σ2
~0T

~0 0

 , T3 =
1

2
λ3 =

1

2

σ3
~0T

~0 0



V1 =
1

2
λ4 =

1

2


0 0 1

0 0 0

1 0 0

 , V2 =
1

2
λ5 =

1

2


0 0 −i

0 0 0

i 0 0

 , V3 =
1

2


1 0 0

0 0 0

0 0 −1

 ,

U1 =
1

2
λ6 =

1

2

 0 ~0

~0T σ1

 , U2 =
1

2
λ7 =

1

2

 0 ~0

~0T σ2

 , U3 =
1

2

 0 ~0

~0T σ3

 ,

Y =
2√
3
T8 =

2√
3

1

2
λ8 =

1

3


1 0 0

0 1 0

0 0 −2


(4.8)

I The generators λi
2 satisfy

tr[
λa
2

λb
2

] =
1

2
δab ,

[
λa
2
,
λb
2

]
= ifabc

λc
2

(4.9)

with fabc totally antisymmetric

f123 = 1, f147 = f246 = f257 = f345 = −f156 = −f367 =
1

2
, f458 = f678 =

√
3

2
.

Which can easily be proved by straight forward matrix multiplication.
I SU(3) is a rank-2 group, i.e. it has two simultaneously diagonal (hence commut-
ing) generators T3 and Y (the Cartan subalgebra). Or, in a basis independent
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way, there are not more than 2 generators which mutually commute.

I In general, the rank of an algebra is the number of simultaneously commuting
generators, and this set is called the Cartan subalgebra.

IWe can write the su(3) algebra in terms of 3 su(2) subalgebras (not invariant, the
algebra is simple)

T± = T1 ± iT2 , V± = V1 ± iV2 and U± = U1 ± iU2 , (4.10)

each set satisfying the familiar SU(2) relations

[T3, T±] =± T± , [T+, T−] = 2T3

[U3, U±] =± U± , [U+, U−] = 2U3=
3

2
Y − T3

[V3, V±] =± V± , [V+, V−] = 2V3=
3

2
Y + T3

I Since the 3 subalgebras are linearly dependent, (U3 = −T3 + V3), we also have
relations between them

[T3, U±] = ∓1

2
U± , [T3, V±] = ±1

2
V± ,

[Y, U±] = ±U±, [Y, V±] = ±V±, [Y, T±] = 0
(4.11)

and

[T+, V+] = [T+, U−] = [U+, V+] = 0 (for angle, 60o, see later)

[T+, V−] = −U−, [T+, U+] = V+, [U+, V−] = T− (for angle, 120o, see later)
(4.12)

In terms of Y , (∼ hypercharge in hadron physics) we have

[Y, U±] = ±U±, [Y, V±] = ±V±, [Y, T±] = 0. (4.13)

Other commutation relations can be obtained from the ones listed here by hermitian
conjugation, for example ([T+, V+])† gives the relation for [T−, V−].

4.3.2 Step operators and states in su(3)

I For su(2), the multiplets were labeled by the eigenvalues of the Casimir operator
J2 and the generator J3. SU(2) is a rank 1 group, while SU(3) is rank 2 and has
two independent Casimir operators. These, however, are typically not used to label
the states. Instead, generally in the case of SU(3), a pair of numbers (p, q) is used
to label the multiplets (cf. j rather than j(j + 1) for SU(2)).
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I Just as we did in the case of su(2), every state within a multiplet, of su(3) can
be seen an eigenstate of T3. We could use the same thinking for the U3 and V3

generators.

I However, since these operators mutually commute, the state will be a simultaneous
eigenstate of T3, U3 and V3, i.e., we can label a state

|t3, u3, v3〉 , (4.14)

where t3, u3 and v3 are eigenvalues of the corresponding generators. This notation
contains redundant information, but that is allowed.

I We can then write (using the simplified notation d(p,q)(Ti) ≡ T̂i)

T̂3 |t3u3v3〉 =t3 |t3u3v3〉
Û3 |t3u3v3〉 =u3 |t3u3v3〉
V̂3 |t3u3v3〉 =v3 |t3u3v3〉

I Let us now look at the action of the raising/lowering operators on the eigenstates:

F Let’s take the following state

T̂3

(
T̂± |t3u3v3〉

)
=
(
T̂±T̂3 + [T̂3, T̂±]

)
|t3u3v3〉

=
(
T̂±T̂3 ± T̂±

)
|t3u3v3〉

= (t3 ± 1)
(
T̂± |t3u3v3〉

)
This tells us that T̂± |t3u3v3〉 is an eigenstate of T̂3 with eigenvalue t3 ± 1, i.e.
we can expand

T̂± |t3u3v3〉 =
∑
u′3v
′
3

N(t3u3v3u
′
3v
′
3) |t3 ± 1, u′3v

′
3〉

Note that u′, v′ may change.

F Let us now consider the action of Û3 instead

Û3

(
T̂± |t3u3v3〉

)
=
(
T̂±Û3 + [Û3, T̂±]

)
|t3u3v3〉

=

(
T̂±Û3 ∓

1

2
T̂±

)
|t3u3v3〉

=

(
u3 ∓

1

2

)(
T̂± |t3u3v3〉

)
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Therefore, in a similar way as before, the above relation tells us that we can
expand the state as

T̂± |t3u3v3〉 =
∑
t′3v
′
3

N(t3u3v3t
′
3v
′
3)

∣∣∣∣t′3, u3 ∓
1

2
, v′3

〉

F Lastly, we act with V̂3

V̂3

(
T̂± |t3u3v3〉

)
=
(
T̂±V̂3 + [V̂3, T̂±]

)
|t3u3v3〉

=

(
T̂±V̂3 ±

1

2
T̂±

)
|t3u3v3〉

=

(
v3 ±

1

2

)(
T̂± |t3u3v3〉

)
and therefore

T̂± |t3u3v3〉 =
∑
t′3u
′
3

N(t3u3v3t
′
3u
′
3)

∣∣∣∣t′3u′3, v3 ±
1

2

〉

F Collecting results, we can state the complete action of T± on the eigenstates

T̂± |t3u3v3〉 →
∣∣∣∣t3 ± 1, u3 ∓

1

2
, v3 ±

1

2

〉
which can be represented graphically:

|t3u3v3〉

∣∣t3 + 1, u3 − 1
2 , v3 + 1

2

〉∣∣t3 − 1, u3 + 1
2 , v3 − 1

2

〉
v3 + 1

2

u3 − 1
2

u3 + 1
2

v3 − 1
2

t3 + 1t3 − 1
T -line

V -lineU -line

60◦

F In a similar way, we can extract how the other raising/lowering operators

Û±/V̂± act

Û± |t3u3v3〉 →
∣∣∣∣t3 ∓ 1

2
, u3 ± 1, v3 ±

1

2

〉
V̂± |t3u3v3〉 →

∣∣∣∣t3 ± 1

2
, u3 ±

1

2
, v3 ± 1

〉
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4.3.3 General properties of multiplets in su(3)

I Repeated applications of the operators T±, U± and V± generate a lattice of states

I When building su(3) multiplets we can start from the state with the highest
t3-value, named the highest weight state and labeled |max〉. This state satisfies

T+ |max〉 = U− |max〉 = V+ |max〉 = 0 .

This is no unique way of defining a highest weight, we can find cases in the literature
where T+ |max〉 = U+ |max〉 = V+ |max〉 = 0, which would be the state with maximal
u3-value and largest t3-value. We shall keep the first definition.

I The weight diagram has no concave angle. We will prove that in an exercise.

I Let us look at part of a multiplet. The point chain between M and N represents
an su(2)-multiplet in V -direction. Correspondingly, the neighboring points of M
must have a symmetrical counterpart in the neighborhood of N . That is, the su(2)-
multiplet N ′−M ′ is also symmetric with respect to the perpendicular s-line. This is
true for other V -multiplets as well, therefore, the U -line MM ′′ has the same length
as the T -line N ′′.
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M

M ′

M ′′

NN ′N ′′

s

I Now we start from the symmetry of the U -multiplet MM ′′. The remaining parallel
submultiplets must also be symmetric with respect to the the perpendicular s′ line.
In this way the area of the su(3)-multiplet is closed forming a partially regular
hexagon with three symmetry axes and angles of 60◦.

M

M ′′

s′

s

60◦

p

q

I Letting p denote the length of the V -line going through the point with maximal
weight, p+1 is the total number of state points on the V -line. Similarly, taking q to
denote the length of the U -line passing through M , the number of states along that
U -line is q + 1. The integers p and q characterize the su(3) multiplet completely,
and we denote it by (p, q).

I Let us now look at the individual states of the (p, q)-multiplet:

F First, let us characterize the state carrying maximal weight. The submultiplet
on the V -line going through M has p+1 states. Because it is an su(2)-multiplet
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we have for the j-value along the V -line

n states = dim R

p+ 1 = 2jV + 1
⇒ jV =

p

2
.

F In terms of the multiplet along the V -line, noting that the point M is the
furthest member of this multiplet, |M〉 can be described as

|M〉 = |jV ,mV,max〉 =
∣∣∣p
2
,
p

2

〉
V
. (4.15)

F On the other hand, the state |M〉 is part of a U -multiplet

|M〉 =
∣∣∣q
2
,−q

2

〉
U

(4.16)

F M is in the largest T -multiplet, and we will prove in exercise 4, problem sheet
2, that

|M〉 =

∣∣∣∣p+ q

2
,
p+ q

2

〉
T

.

F In the above relations we have put the relative phases to +1. The state |M〉
is called unique, because it can be described by one expression of the T−, U−
or V−type.

M

A

I We will now show that the neighboring state |A〉 is also unique

F |A〉 lies at the end of the V -multiplet with p+ 2 states, i.e.

|A〉 =

∣∣∣∣p+ 1

2
,
p+ 1

2

〉
V

(4.17)
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F For the corresponding T -multiplet we have

|A〉 =

∣∣∣∣p+ q − 1

2
,
p+ q − 1

2

〉
T

(4.18)

F In the U -subalgebra we get

|A〉 =
∣∣∣q
2
,−q

2
+ 1
〉
U

and |A〉 =
∣∣∣q
2
− 1,−q

2
+ 1
〉
U

(4.19)

F We define: a state is unique if it is represented at least in one subal-
gebra (T, U, V ) by a single expression. For this reason |A〉 is unique and
we can drop the last expression.

M

A

B

N

P

I Another way to see this is by trying different paths from the highest weight sate
|M〉 to states |A〉 or |B〉. For example, we can try the direct path to the states
|A,B〉 and the one that first passes through the state |M〉, we get |A〉 = Û+ |M〉

|A′〉 = V̂+T̂− |M〉 =
(
T̂−V̂+ − Û+

)
|M〉 = −Û+ |M〉 |B〉 = V̂− |M〉

|B′〉 = Û−T̂− |M〉 =
(
T̂−Û− + V̂−

)
|M〉 = V̂− |M〉

Up to a relative phase, |A′〉 and |B′〉 are the same states as |A〉 and |B〉, respectively.
The same result is obtained for any other path.

I Now we deal with the state |N〉 and show that it is doubly occupied. This
means that out of the 3 descriptions (T, U, V ), one is composed out of a pair of
orthonormalized su(2)-states. The other 2 descriptions may comprise two or
more su(2)-states each. Therefore, we have:
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F We then get for the U -expressions∣∣∣∣q + 1

2
,−q − 1

2

〉
U

,

∣∣∣∣q − 1

2
,−q − 1

2

〉
U

(4.20)

which means that we can write the state |N〉 as a linear combination of these
orthogonal expressions. The second expression is obtained by subtracting 1 to
j, which accounts for deleting two sites. Essentially we extract the outer layer
of sites.

F For the T -subalgebra we get∣∣∣∣p+ q

2
,
p+ q − 2

2

〉
T

,

∣∣∣∣p+ q − 2

2
,
p+ q − 2

2

〉
T

(4.21)

F For the V -subalgebra we get∣∣∣∣p+ 1

2
,
p− 1

2

〉
V

,

∣∣∣∣p− 1

2
,
p− 1

2

〉
V

(4.22)

F The pairs of expressions are equivalent in such a way that the members of one
pair, say T -pair, can be expressed linearly by the members of an other pair,
say the U -pair∣∣∣∣p+ q

2
,
p+ q − 2

2

〉
T

=a1

∣∣∣∣q + 1

2
,−q − 1

2

〉
U

+ a2

∣∣∣∣q − 1

2
,−q − 1

2

〉
U∣∣∣∣p+ q − 2

2
,
p+ q − 2

2

〉
T

=a2

∣∣∣∣q + 1

2
,−q − 1

2

〉
U

− a1

∣∣∣∣q − 1

2
,−q − 1

2

〉
U

The coefficients in the second expression have been chosen in order to have
both combinations orthogonal.

F In a similar way∣∣∣∣p+ q

2
,
p+ q − 2

2

〉
T

=b1

∣∣∣∣p+ 1

2
,
p− 1

2

〉
V

+ b2

∣∣∣∣p− 1

2
,
p− 1

2

〉
V∣∣∣∣p+ q − 2

2
,
p+ q − 2

2

〉
T

=b2

∣∣∣∣p+ 1

2
,
p− 1

2

〉
V

− b1

∣∣∣∣p− 1

2
,
p− 1

2

〉
V

I In order to determine the coefficients we can proceed as follows:

F We make use of the relation U+V− − V−U+ − T− = 0 and apply it to the
maximal weight state

0 =(U+V− − V−U+ − T−) |M〉

=U+V−

∣∣∣p
2
,
p

2

〉
V
− V−U+

∣∣∣q
2
,−q

2

〉
U
− T−

∣∣∣∣p+ q

2
,
p+ q

2

〉
T
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F The raising/lowering operators act just in the same way as in the case of
su(2)-algebra. We then get

0 =U+

√
p

2

p+ 2

2
− p

2

p− 2

2
|B〉 − V−

√
q

2

q + 2

2
− q

2

q − 2

2
|A〉

−
√
p+ q

2

p+ q + 2

2
− p+ q

2

p+ q − 2

2

∣∣∣∣p+ q

2
,
p+ q − 2

2

〉
T

=
√
p

√
q + 1

2

q + 3

2
− q + 1

2

q − 1

2

∣∣∣∣q + 1

2
,−q − 1

2

〉
U

−√q
√
p+ 1

2

p+ 3

2
− p+ 1

2

p− 1

2

∣∣∣∣p+ 1

2
,
p− 1

2

〉
V

−
√
p+ q

∣∣∣∣p+ q

2
,
q + p− 2

2

〉
T

=
√
p(q + 1)

∣∣∣∣q + 1

2
,−q − 1

2

〉
U

−
√
q(p+ 1)

∣∣∣∣p+ 1

2
,
p− 1

2

〉
V

−
√
p+ q

∣∣∣∣p+ q

2
,
p+ q − 2

2

〉
T

F We can now form the inner product with the bra state T

〈
p+q

2 , p+q−2
2

∣∣, i.e.

√
p(q + 1)

T

〈
p+ q

2
,
p+ q − 2

2

∣∣∣∣ q + 1

2
,−q − 1

2

〉
U

−
√
q(p+ 1)

T

〈
p+ q

2
,
p+ q − 2

2

∣∣∣∣ p+ 1

2
,
p− 1

2

〉
V

−
√
q + p

T

〈
p+ q

2
,
p+ q − 2

2

∣∣∣∣ p+ q

2
,
p+ q − 2

2

〉
T

We then get
a1

√
p(q + 1)− b1

√
q(p+ 1)−

√
p+ q = 0

F We can now form the inner product with the bra state T

〈
p+q−2

2 , p+q−2
2

∣∣ and get

a2

√
p(q + 1)− b2

√
q(p+ 1) = 0

F Making use of the normalization a2
1 + a2

2 = b2
1 + b2

2 = 1 we obtain

a1 =

√
p

(q + 1)(p+ q)
, a2 =

√
1− a2

1 =

√
q(p+ q) + q

(q + 1)(p+ q)

b1 =−
√

q

(q + 1)(p+ q)
, b2 =

√
q(p+ q) + p

(q + 1)(p+ q)
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I The states on the V -line between N and P contain more than two V -expressions.
But since there are only two U - and T -expressions these states are said to be doubly
occupied.

I Thus, the states of the first inner shell are doubly occupied. The fol-
lowing shell is triply occupied - provided that the preceding is hexagonal and
so on.

I We can do the same by looking at the different paths that we have from |M〉 to
|N〉. We have, for example,

|N〉 = T̂− |M〉

|N ′〉 = V̂−Û+ |M〉 = Û+V̂− |M〉 − T̂− |M〉

|N ′′〉 = Û+V̂− |M〉 = |N ′〉+ |N〉

We see that |N ′′〉 can be written as a linear combination of |N〉 and |N ′〉. The
same will happen for any other path. As we go to an inner shell the number of
independent paths increases by one unit.

I The occupancy increases until we reach a triangular shell. After that, all trian-
gular shells have the same occupancy.

I The dimension of the representation will be given by the sum of all weights,
properly counting the multi occupied ones. The general expression for the dimension
is given by

d(p, q) =
1

2
(p+ 1)(q + 1)(p+ q + 2) .

We will prove this relation in exercise 5 on the second exercise sheet. Note that
this expression is symmetric in the interchange of p and q, i.e. the (p, q) and (q, p)
representations have the same dimension.

I Here are some lower dimensional irreducible representations:
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(0, 0) (1, 0) (0, 1) (1, 1) (2, 0) (0, 2) (2, 1)

1 3 3 8 6 6 15

I Note that we can have different irreducible representations with the same dimen-
sion. For example, we have see above that (2, 1) has dimension 15. The irreducible
representation (4, 0) has the same dimension, but a different weight diagram

(4, 0) 15′

4.3.4 Irreducible representations of the su(3) algebra

I We have that

êi |ψk〉 =
d∑
l=1

d(p,q)(êi)lk |ψl〉 = − i
2

d∑
l=1

d(λ̂i)lk |ψl〉

and, therefore, the matrices − i
2D(λ̂i) are representation of the Lie algebra su(3).

Therefore,

λ̂i |ψk〉 =
d∑
l=1

d(p,q)(λ̂i)lk |ψl〉 and D(p,q)(λ̂i)mk =
〈
ψ(p,q)
m

∣∣∣ λ̂i ∣∣∣ψ(p,q)
k

〉
I We can write the operators λ̂i as

λ̂1 =T̂+ + T̂−, λ̂2 = −i
(
T̂+ − T̂−

)
, λ̂3 = 2T̂3

λ̂4 =V̂+ + V̂−, λ̂5 = −i
(
V̂+ − V̂−

)
,

λ̂6 =Û+ + Û−, λ̂7 = −i
(
Û+ − Û−

)
, λ̂8 =

2√
3

(
Û3 + V̂3

)
I Let us look to an example, i.e. the su(3) multiplet (2, 0):
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F The irrep (2, 0) is 6-plet, i.e. is characterized by the states |1〉 , |2〉 , . . . , |6〉

|1〉|2〉

|4〉|5〉

|3〉

|6〉

F We now find the values of T3, U3 and V3 that characterized the states. We
start with the highest weight state

p+ 1 = 2j
|1〉
V + 1 −→ j

|1〉
V =

p

2
= 1 → m

|1〉
V = 1, m

|4〉
V = 0, m

|6〉
V = −1

q + 1 = 2j
|1〉
U + 1 −→ j

|1〉
U =

q

2
= 0 → m

|1〉
U = 0

p+ q + 1 = 2j
|1〉
T + 1 −→ j

|1〉
T =

p+ q

2
= 1 → m

|1〉
T = 1, m

|2〉
T = 0, m

|3〉
T = −1

For the state |2〉 we already have the T3 value. Then

(p− 1) + 1 = 2j
|2〉
V + 1 −→ j

|2〉
V =

p− 1

2
=

1

2
→ m

|2〉
V =

1

2
, m

|5〉
V = −1

2

(q + 1) + 1 = 2j
|2〉
U + 1 −→ j

|2〉
U =

q + 1

2
=

1

2
→ m

|2〉
U =

1

2
, m

|4〉
U = −1

2

Now we loot into the state |3〉

(p− 2) + 1 = 2j
|3〉
V + 1 −→ j

|3〉
V =

p− 2

2
= 0 → m

|3〉
V = 0

(q + 2) + 1 = 2j
|3〉
U + 1 −→ j

|3〉
U =

q + 2

2
= 1 → m

|3〉
U = 1, m

|5〉
U = 0, m

|6〉
U = −1

Now we loot into the state |4〉, we just need the T3 value

(p+q−1)+1 = 2j
|4〉
T +1 −→ j

|4〉
T =

p+ q − 1

2
=

1

2
→ m

|4〉
T =

1

2
, m

|5〉
T = −1

2

The only case left is the value of T3 for |6〉, which is trivially zero. Therefore,
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we have final result

states T3 U3 V3

|1〉 1 0 1

|2〉 0 1
2

1
2

|3〉 −1 1 0

|4〉 1
2 −1

2 0

|5〉 −1
2 0 −1

2

|6〉 0 −1 −1

F we now look at the action of T̂±, Û± and V̂±. Since they will act of su(2)
triplets and doublet, we will have the factors

√
2 and 1 associated with each,

respectively. For T̂± we have

T̂+ |1〉 =0 , T̂+ |2〉 =
√

2 |1〉 , T̂+ |3〉 =
√

2 |2〉
T̂− |1〉 =

√
2 |2〉 , T̂− |2〉 =

√
2 |3〉 , T̂− |3〉 = 0

T̂+ |4〉 =0 , T̂+ |5〉 = |4〉
T̂− |4〉 = |5〉 , T̂− |5〉 = 0

T̂± |6〉 =0

For the Û± we get

Û± |1〉 =0

Û+ |2〉 =0 , Û+ |4〉 = |2〉
Û− |2〉 = |4〉 , Û− |4〉 = 0

Û+ |3〉 =0 , Û+ |5〉 =
√

2 |3〉 , Û+ |6〉 =
√

2 |5〉
Û− |3〉 =

√
2 |5〉 = , Û− |5〉 =

√
2 |6〉 , Û− |6〉 = 0

and for V̂± we get

V̂+ |1〉 =0 , V̂+ |4〉 =
√

2 |1〉 , V̂+ |6〉 =
√

2 |4〉
V̂− |1〉 =

√
2 |4〉 , V̂− |4〉 =

√
2 |6〉 , V̂− |6〉 = 0

V̂+ |2〉 =0 , V̂+ |5〉 = |2〉
V̂− |2〉 = |5〉 , V̂− |5〉 = 0

V̂± |3〉 =0
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F We can now compute the representation of the algebra generators

D(λ̂1)
(2,0)
mk = 〈m|

(
T̂+ + T̂−

)
|k〉 = 〈m| T̂+ |k〉+ 〈m| T̂− |k〉

we then get

value m k
√

2 1 2
√

2 2 1
√

2 2 3
√

2 3 2

1 4 5

1 5 4

all other entries 0

The matrix then reads

D(λ̂1)
(2,0) =



0
√

2 0 0 0 0
√

2 0
√

2 0 0 0

0
√

2 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0


F We can repeat the above procedure for the rest of the generators

D(λ̂2)
(2,0) =i



0
√

2 0 0 0 0
√

2 0
√

2 0 0 0

0
√

2 0 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 0


, D(λ̂3)

(2,0) =



2 0 0 0 0 0

0 0 0 0 0 0

0 0 −2 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 0



D(λ̂4)
(2,0) =



0 0 0
√

2 0 0

0 0 0 0 1 0

0 0 0 0 0 0
√

2 0 0 0 0
√

2

0 1 0 0 0 0

0 0 0
√

2 0 0


, D(λ̂5)

(2,0) = i



0 0 0 −
√

2 0 0

0 0 0 0 −1 0

0 0 0 0 0 0
√

2 0 0 0 0
√

2

0 1 0 0 0 0

0 0 0
√

2 0 0


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D(λ̂6)
(2,0) =



0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0
√

2 0

0 1 0 0 0 0

0 0
√

2 0 0
√

2

0 0 0 0
√

2 0


, D(λ̂7)

(2,0) = i



0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −
√

2 0

0 1 0 0 0 0

0 0
√

2 0 0 −
√

2

0 0 0 0
√

2 0



D(λ̂8)
(2,0) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1
2

0 0

0 0 0 0 −1
2

0

0 0 0 0 0 −2


I We can follow the same procedure in order to find the representations of other
dimensional multiplets. In the case presented above there was no multi occupancy,
let us then look at the su(3) multiplet (1, 1)

|1〉|2〉

|3〉|4〉|5〉

|6〉|7〉

|8〉

In this case, when o look at the T multiplets. We have one double occupied weight
diagram in su(2), that can be decompose into its irreducible components

|3〉|4〉|5〉

|8〉
−→

|3〉|4〉|5〉
+

|8〉

This is done in one of the su(2) subalgebras, the other will be linear combinations
of these states. (more details in problem 8 of week 2)

4.3.5 The hypercharge Y

I In order to specified the status of a su(3)-multiplet we used the T3-, U3- and V3-
values in a star-shaped coordinate system. Of course, two coordinates are sufficient
for a two-dimensional system.
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I In practice, the T -axis and a perpendicular Y -axis are taken. In hadron physics
the Y -value are named hypercharge.

I The claim is that the hypercharge operator is given by

Ŷ =
1√
3
λ̂8 =

2

3

(
Û3 + V̂3

)
=

2

3

(
2Û3 + T̂3

)
=

2

3

(
2V̂3 − T̂3

)
F Since Ŷ commutes with the TUV3 operators, i.e. [Ŷ , T̂3] = [Ŷ , Û3] = [Ŷ , V̂3] =

0, the state |t3u3v3〉 is also eigenstate of the operator Ŷ

Ŷ |t3u3v3〉 = Y |t3u3v3〉 and |t3u3v3〉 ≡ |t3Y 〉

F Since Ŷ commutes with T̂±, i.e.

[Ŷ , T̂±] =
2

3
[Û3, T̂±] +

2

3
[V̂3, T̂±] =

2

3

(
∓T̂± ± T̂±

)
= 0

leading to

Ŷ
(
T̂± |t3Y 〉

)
= Y

(
T̂± |t3Y 〉

)
That is, the state T̂± |t3Y 〉, which differs in T3 by ±1 from the state |t3Y 〉 has
the same hypercharge. (No way, Sherlock!! That’s why T3- and Y -axis are
orthogonal.)

F Using [Ŷ , Û±] = ±Û± we get

Ŷ
(
Û± |t3Y 〉

)
=Û±Ŷ |t3Y 〉+±Û± |t3Y 〉

=(Y ± 1)
(
Û± |t3Y 〉

)
This means that Û± not only rises and lowers U3 by 1 but also Y in the same
sense. Analogously on shows that Y varies alike to V3. The picture below
shows that behavior

|1〉|2〉

|3〉

U -line V -line

T -line

Y -line

11 ”1” =
√

3
2
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The points 1 and 2 have both the distance 1 from 3. On the other hand,
the distance (Y -value) of 3 from the T -line is also 1, which is geometrically
impossible. We circumvent the inconsistency by taking the Y -values in units
of
√

3/2.

Note: Reading the values of the hypercharge Y in units of
√

3/2 is nothing

more than saying that the vertical axis is represented by T̂8. We could have
used the system T8T3 (which is the Cartan subalgebra), and then the we would
have got

T̂8

(
Û± |t3t8〉

)
=

(
t8 ±

√
3

2

)(
Û± |t3t8〉

)
It is standard practice to use the hypercharge notation as it is related with
physical quantities. But then in the weight diagrams we have to read it in
units of

√
3/2Y ≡ Y . I shall still call this the Y T3 plane but write Y to

remember that this is not the true hypercharge.

I The origin of the TY -coordinate system lies on the intersection point of the
symmetry axes s and s′, because there the eigenvalues U3 and V3 vanish, i.e.

Ŷ |t3u3v3〉 =
2

3
(Û3 + V̂3) |t3u3v3〉 = 0

I The value of Y ′ is

Y

T3

Y ′

p

q

Y ′ =

√
3

2

(
q +

p− q
3

)

Since p and q are integers, the expression (p − q)/3 amounts to an integer number
plus 0, 1/3 or 2/3. Therefore, the points on top of the multiplet can have the
Y -coordinates integer, integer+1/3 and integer+2/3 (measured in units of

√
3/2)

I This is true for all states pf a multiplet because they differ by integers if Y . One
may say that the multiplet has the

Triality:
τ

3
(τ = 1, 2, 3)

if its coordinates ate integer plus τ/3.



88

4.3.6 Fundamental and antifundamental irreps weights

I We now look into more detail on the 3 and 3 irreps. For the fundamental repre-
sentation, i.e. 3 or (1, 0), we have

|1〉|2〉

|3〉

T3

Y

−1
2

1
2

1
2
√

3

− 1√
3

3 = (1, 0)

Ŷ |1(2)〉 = Y ′ |1(2)〉 =
1

2
√

3
|1(2)〉

Ŷ |3〉 = Ŷ
(
Û− |2〉

)
=

(
1

2
√

3
− 1.

√
3

2

)
|3〉

= − 1√
3
|3〉

I The weight vectors are then given by

State Weight (t3, Y ) Weight (t3, Y )

|1〉
(

1

2
,

1

2
√

3

) (
1

2
,
1

3

)
|2〉

(
−1

2
,

1

2
√

3

) (
−1

2
,
1

3

)
|3〉

(
0,− 1√

3

) (
0,−2

3

)
Thus the maximal weight state is |1〉 (largest T3-value).

I Let us know look at the antifundamental representation, i.e. 3 or (0, 1). Let us
do it by steps:

• First we look at the maximal Y -value, i.e Y ′. For the representation (0, 1) is
given by Y ′ = 1√

3
.

• Second we notice that since p = 0 in (p, q) this weight diagram has to be a
triangle point up. This implies there is only one state with Y ′ value.



89

Therefore, we get

∣∣2〉∣∣1〉

∣∣3〉
T3

Y

−1
2

1
2

− 1
2
√

3

1√
3

3 = (1, 0)
Ŷ
∣∣3〉 = Y ′

∣∣3〉 =
1√
3

∣∣3〉

Ŷ (−
∣∣2〉) = Ŷ

(
Û−
∣∣3〉) =

(
1√
3
− 1.

√
3

2

)
(−
∣∣2〉)

=
−1

2
√

3
(−
∣∣2〉)

(overall minus sign in |2〉 was omitted in the diagram, note that Û− |3̄〉 = − |2̄〉.)

I The weight vectors are then given by

State Weight (t3, Y ) Weight (t3, Y )

∣∣1〉 (
−1

2
,− 1

2
√

3

) (
−1

2
,−1

3

)
∣∣2〉 (

1
2 ,−

1
2
√

3

) (
1
2 ,−

1
3

)∣∣3〉 (
0, 1√

3

) (
0, 2

3

)
I We have found that if the fundamental states |i〉 have (t3, Y ) weight vectors, the
states

∣∣i〉 have −(t3, Y ). This is actually a more general result: the weight vectors

of the conjugated representation R can be obtained from the weight vectors of R
by a global sign conjugation.

I The reason why the weight vectors get a global minus sign can be easily understood
by recalling how is defined the complex representation. We have seen in the previous
chapter that

if Ta belongs to the algebra then Ta = −T Ta also belongs.

For anti-hermitian matrices the representation d(Ta) = d(Ta)
∗, i.e. the conjugated

one. Let’s keep working with the definition involving the transpose. We then have
that the algebra operators satisfy

T̂3 = −T̂3
T

= −T̂3 , Ŷ = −Ŷ T = −Ŷ (diagonal operators)

T̂± = −T̂±
T

= −T̂∓ , V̂± = −V̂±
T

= −V̂∓ , Û± = −Û±
T

= −Û∓
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I The fist line on the above equation tell us that the eigenvalues of T̂3 and Ŷ change
sign under conjugation. Just the result we wanted.

I The second line tell us something very important also. When raising and lowering
states, we will get a minus sign factor in the action of the conjugate operators. Let

us see this in action in the simplest example, we label T̂±
3
≡ T̂± and T̂±

3
≡ T̂±.Take

the states in the triplet and antitriplet irrep

∣∣1(1)
〉

=


1

0

0

 ,
∣∣2(2)

〉
=


0

1

0

 ,
∣∣3(3)

〉
=


0

0

1


Diagrammatically we see that we can go from state |1〉 to |2〉 applying T̂−

3
. In

matrix form it would look like

T̂−
3
|1〉 =


0 0 0

1 0 0

0 0 0




1

0

0

 =


0

1

0

 = |2〉

For the complex representation we see that we should be able to go from
∣∣1〉 to

∣∣2〉
with the action T̂+

3
. In the matrix form this would look like

T̂+

3 ∣∣1〉 = −T̂−
3 ∣∣1〉 = −


0 0 0

1 0 0

0 0 0




1

0

0

 = −


0

1

0

 = −
∣∣2〉

Therefore, the raising operator T̂+

3
give us a new state with the T3-value increased

by one unit, but the an additional minus sight. When using the ladder operators
for the conjugate representation we have to account for this extra sign.

4.3.7 Direct products of su(3)-multiplets

I We can extend the graphical procedure used in su(2) to the su(3) case. Again,
we depict the function set of a direct product in such a way that we draw the first
multiplet (p, q) and set the second multiplet (p′, q′) repeatedly so that its center
appears in every point of (p, q), which we delete afterwards. For example:

I The tensor product 3⊗ 3
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⊗ −→ =

= ⊕
(
3⊗ 3 = 6⊕ 3

)

The is the known Clebsch-Gordan series. I We can label the multiplets and also
look at the CG coefficients for the representations.

F Let’s say we have a triplet labeled as

|1〉|2〉

|3〉

T3

Y

−1
2

1
2

1
2
√

3

− 1√
3

F We compute the product with itself

|2, 2〉 |2, 1〉 , |1, 2〉 |1, 1〉

|3, 2〉 , |2, 3〉 |3, 1〉 , |1, 3〉

|3, 3〉
− 2√

3

− 1
2
√

3

1√
3

Y

T3

0 1
2 1−1

2−1
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With |i, j〉 ≡ |i〉⊗|j〉. The eigenvalues can be computed by acting the diagonal
operators on the final states

Ŷ |1, 1〉 =
(
Ŷ |1〉′

)
⊗ |1〉+ |1〉 ⊗

(
Ŷ |1〉′

)
= 2

1

2
√

3
=

1√
3

Ŷ |3, 3〉 =
(
Ŷ |3〉′

)
⊗ |3〉+ |3〉 ⊗

(
Ŷ |3〉′

)
= 2
−1√

3
= − 2√

3

The weights on the middle line have in the Y -direction ”1” unit less than the
highest Y -value therefore − 1

2
√

3
. For the T̂3 we have

T̂3 |1, 1〉 =
(
T̂3 |1〉′

)
⊗ |1〉+ |1〉 ⊗

(
T̂3 |1〉′

)
= 2

1

2
= 1 .

This give the values of the first line of weights. For the second line, since is a
doublet of su(2)T it has ±1/2.

F We already know that the single states belong to the 6. What we need to find
is which combination of states enters in the 6 and 3̄ for the doubly occupied
ones. Therefore, we define

|1, 2〉6 = a |1〉 ⊗ |2〉+ b |2〉 ⊗ |1〉 , |1, 2〉3̄ = c |1〉 ⊗ |2〉+ d |2〉 ⊗ |1〉 .

F The states should be orthogonal and normalized to unit, we then get the
following constraints

a2 + b2 = 1 , c2 + d2 = 1 , ac+ bd = 0 .

Where we used the fact that su(3) is a real Lie algebra.

F We now act the raising operator T̂+ on these states

T̂+

6
|1, 2〉6 =a

(
T̂+

3
|1〉 ⊗ |2〉+ |1〉 ⊗ T̂+

3
|2〉
)

+ b
(
T̂+

3
|2〉 ⊗ |1〉+ |2〉 ⊗ T̂+

3
|1〉
)

=(a+ b) |1〉 ⊗ |1〉

T̂+

3̄
|1, 2〉3̄ =c

(
T̂+

3
|1〉 ⊗ |2〉+ |1〉 ⊗ T̂+

3
|2〉
)

+ d
(
T̂+

3
|2〉 ⊗ |1〉+ |2〉 ⊗ T̂+

3
|1〉
)

=(c+ d) |1〉 ⊗ |1〉

F Since T̂+

3̄
|1, 2〉 ≡ 0 we get

d = −c ⇒ a = b =
1√
2
.
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Leading to

T̂+

6
|1, 2〉6 =

√
2 |1, 1〉6

like we would expect from a SU(2)T triplet.

F The we get

|1, 2〉6 =
1√
2

(|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉) , |1, 2〉3̄ =
1√
2

(− |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉)

F We can do the same for |2, 3〉6,3̄ and |1, 3〉6,3̄ using Û+ and V̂+, respectively.
Let us do it for |2, 3〉3̄

Û− |2, 1〉3̄ ≡ − |1, 3〉3̄ =
Û−√

2
(− |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉)

=
1√
2

(− |1〉 ⊗ |3〉+ |3〉 ⊗ |1〉)

and

V̂− |2, 1〉3̄ ≡ − |2, 3〉3̄ =
V̂−√

2
(− |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉)

=
1√
2

(− |3〉 ⊗ |2〉+ |2〉 ⊗ |3〉)

As a self-consistency test we can check that

T̂+(− |2, 3〉3̄) = − |1, 3〉3̄

where we have used T̂+ = [V̂+, Û−];
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F We then get

states weight (t3, Y ) weight (t3, Y )

6 :



|1〉 ⊗ |1〉
(

1, 1√
3

) (
1, 2

3

)
|2〉 ⊗ |2〉

(
−1, 1√

3

) (
−1, 2

3

)
|3〉 ⊗ |3〉

(
0,− 2√

3

) (
0,−4

3

)
1√
2

(|1〉 ⊗ |2〉+ |2〉 ⊗ |1〉)
(

0, 1√
3

) (
0, 2

3

)
1√
2

(|1〉 ⊗ |3〉+ |3〉 ⊗ |1〉)
(

1
2 ,−

1
2
√

3

) (
1
2 ,−

1
3

)
1√
2

(|2〉 ⊗ |3〉+ |3〉 ⊗ |2〉)
(
−1

2 ,−
1

2
√

3

) (
−1

2 ,−
1
3

)

3̄ :


1√
2

(− |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉)
(

0, 1√
3

) (
0, 2

3

)
1√
2

(− |1〉 ⊗ |3〉+ |3〉 ⊗ |1〉)
(

1
2 ,−

1
2
√

3

) (
1
2 ,−

1
3

)
1√
2

(− |3〉 ⊗ |2〉+ |2〉 ⊗ |3〉)
(
−1

2 ,−
1

2
√

3

) (
−1

2 ,−
1
3

)
Therefore, 6 is symmetric and 3̄ is antisymmetric under the permutation of
two of the original states.

4.4 A short note on the general classification of
complex semi-simple Lie algebras

Read Jones 9.2-9.5 instead of this section.
I Let’s say that a particular Lie group has N generators total, or is a N dimen-

sional group. Then, let’s say that there are M < N generators in the commuting
subalgebra.

Cartan Subalgebra: Ĥi (i = 1, · · · ,M)

non-Cartan generators: Êi (i = 1, · · · , N −M)

Rank of the group: M

and Ĥi hermitian.

F Ĥi are by definition simultaneously diagonalized. We will write physical states
in terms of their eigenvalues.

F In an n-dimensional representation d(n), the generators are n × n matrices,
there will be a total of n eigenvectors, and each will have one eigenvalue at
each of the M Cartan generators H i.
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F For each of these eigenvectors we have the M eigenvalues of the Cartan gen-
erators, which we call

Weights: µij →

 j = 1, · · · , n eigenvectors

i = 1, · · · ,M eigenvalues
Weight Vector: ~µj =



µ1
j

µ2
j

µ3
j

...

µMj


with µij real parameters, because these are eigenvalues of hermitian operators.

I The remaining non-Cartan generators can be combined into a linear combinations
to form a linearly independent set of raising and lowering operators. These are also
called Weyl generators.

I Weight vectors for the adjoint representation are called roots (or root vectors)
and are the objects that tell us in which direction we can move and how much in
the M -dimensional space.

I In the Cartan-Weyl basis the algebra reads

[H i, Hj] = 0 , [H i, E~α] = αiE
~α , [E~α, E−~α] = αiH

i ,

[E~α, E
~β] =

 NαβE
~α+~β ~α + ~β 6= 0

0

Nonzero roots are non-degenerate and roots are not proportional apart from ~α and
−~α.

I For semi-simple Lie algebras we have some rules for the roots:

F If ~α is a root, so is −~α;

F If ~α, ~β are roots, 2(~α,~β)

(~α,~β)
is an integer;

F If ~α, ~β are roots, β − 2~α (~α,~β)
(~α,~α) is a root.

I From this it follows that the angle ϕ between roots is given by

cosϕ =
(~α, ~β)√

(~α, ~α)(~β, ~β)
−→ ϕ = 30◦, 45◦, 60◦, 90◦ .
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I The root diagrams in 2D are given below

I Let us then look back to what we did in su(3).

F Looking at the 3-dimensional representation, we will have 3 eigenvectors

~v1 =


1

0

0

 , ~v2 =


0

1

0

 , ~v3 =


0

0

1

 (4.23)
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F The Cartan generators

H1 = T3 =
1

2


1 0 0

0 −1 0

0 0 0

 , H2 = T8 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 (4.24)

F The eigenvalues are

H1~v1 =

(
1

2

)
~v1 , H1~v2 =

(
−1

2

)
~v2 , H1~v3 = (0)~v3 ,

H2~v1 =

(
1

2
√

3

)
~v1 , H2~v2 =

(
1

2
√

3

)
~v2 , H2~v3 =

(
− 1√

3

)
~v3

F So the eigenvector ~v1 has eigenvalue 1/2 with H1 and eigenvalue 1/2
√

3 with
H2. This is consistent with the general fact that the dimension of the root
space is always equal to the rank (n− 1 = 3− 1 = 2).

So the weight vectors are

~µ1 =

 1
2

1
2
√

3

 , ~µ2 =

−1
2

1
2
√

3

 , ~µ3 =

 0

− 1√
3

 (4.25)

they are not called ”root” vectors because we are not working in the adjoint
representation.

F We can draw a graph in the 2-dimensional (H1, H2) plane as below

~µ1~µ2

~µ3

3

I So, now we have a good understanding of the ”charge lattice” in this representa-
tion of SU(3), which depended only on the Cartan generators H1 and H2.
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Since ~ti are directly related with ~vi, the above relations implies

T± : ~µ2,1 → ~µ1,2 meaning ~µ2 + ~α1 = ~µ1

V ± : ~µ3,1 → ~µ1,3 meaning ~µ3 + ~α2 = ~µ1

U± : ~µ3,2 → ~µ2,3 meaning ~µ3 + ~α3 = ~µ2

The solutions for ~αi are then given by

~α1 =

1

0

 , ~α2 =

 1
2√
3

2

 , ~α3 =

−1
2√
3

2


These are roots, i.e. the weighs of the adjoint representation, since their parametrize
the steps we are allowed to make in the weight diagram.

I The roots ~αi are not linear independent. We can choose two the build the linear
independent space. We shall choose ~α2 and −~α3, this choice is called simple roots,
i.e. we have choose to work with the ladder operators

~α2 ∼ V + ≡ E+~α2 and − ~α3 ∼ U− ≡ E−~α3 (4.26)

H1

H2

E+~α1E−~α1

E+~α2

E−~α2

E+~α3

E−~α3

I In this way, all weight vectors are related

~µ′ = ~µ+ l~α2 +m~α3 (4.27)

with l and m integers.

I Higher dimensional representations are constructed diagrammatically using the
weight and root vectors. To do this, we need to order and define larger or smaller
vectors under an appropriate rule. Compare the first components of two vectors
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~µ and ~ν. If µ1 > ν1, we define ~µ > ~ν. But if µ1 = ν1, we compare the second
components. For instance

(3, 1) > (2, 3) (2, 1) > (2, 0) . (4.28)

I Now we can introduce the highest weight for each representation. For the (anti-)
fundamental representations we get

3 = (1, 0) : ~Λ1 ≡ ~µ1 =

 1
2

1
2
√

3



3 = (0, 1) : ~Λ2 ≡ ~µ2 =

 1
2

−1
2
√

3




~Λ = p1

~Λ1 + p2
~Λ2

highest weight for arbitrary irrep

where p1,2 are non-negative integers.

Starting from the highest weight ~Λ, application of −~α2 by p1 times (subtracting
to the highest weight the root ~α2) determines one side −p1~α2. Similarly one has
another side p2~α3 (subtraction to the highest weight the root −~α3)

H1

H2

~Λ1

~Λ2

p1
~Λ1

p2
~Λ2

~Λ

−p1~α2

p2~α3
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Fundamental representation (1, 0) = 3

highest weight: ~Λ = 1.~Λ1 + 0.~Λ2 =

 1
2

1
2
√

3

 = ~µ1

↓

applying − ~α2: ~Λ− ~α2 =

 0

− 1√
3

 = ~µ3

↓

applying + ~α3: ~µ3 + ~α3 =

−1
2

1
2
√

3

 = ~µ2

~Λ = ~µ1~µ2

~µ3

−~α2

1 0

−1 1

0 − 1



Chapter 5

From small boxes comes
great responsibility!
Young diagrams and tensor formalism in SU(N)

5.1 Young diagrams

5.1.1 Connection with the permutation group

I The diagrammatic method presented in the previous section starts getting to
over whelming for large (p, q) multiplets in su(3), or larger su(N). There is a more
efficient method known as the Young diagrams that can help us in this task.

I In order to be able to work with Young diagrams we first need to introduce the
idea of partitions:

(i) A partition λ := {λ1, λ2, · · · , λr} of the integer n is a sequence of positive
integers λi, arranged in descending order, whose sum is equal to n

λi ≥ λi+1 , i = 1, · · · , r − 1 and
∑r

i=1 λi = n

(ii) Two partitions λ, µ are equal if λi = µi ∀i.

(iii) λ > µ (λ < µ) if the first non-zero number in the sequence (λi−µi) is positive
(negative).

(iv) A partition λ is represented graphically by a Young Diagram which consists
of n squares arranged in r rows, the ith one of which contains λi squares.

I It’s time for a couple of examples:

101
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F Take the case n = 3, there are three distinct partitions and corresponding
Young diagrams

Partition [3] [21] [111]

Young diag.

F Take the case of n = 4, there are five distinct partitions and corresponding
Young diagrams

Partition [4] [31] [22] [211] [1111]

Young diag.

Why is this useful? There is a one-to-one correspondence between the parti-
tions of n and the classes of group elements Sn. Recalling what we have learn in the
discrete part of the course, every class of Sn is characterized by a given cycle struc-
ture consisting of ν1 1-cycles, ν2 2-cycles, · · · etc. Since the numbers 1, 2, · · · , n
fill all the cycles, we must have

n = ν1 + 2ν2 + 3ν3 + · · · = (ν1 + ν2 + · · · )︸ ︷︷ ︸
λ1

+

>

(ν2 + ν3 + · · · )︸ ︷︷ ︸
λ2

+

>

(ν3 + · · · )︸ ︷︷ ︸
λ3

+

>

· · ·

and thus λ := {λi} is a partition of n. This then lead us to the following theorem

Theorem

The number of distinct Young diagrams for any given n is equal to the number

of classes of Sn – which is, in turn, equal to the number of inequivalent

irreducible representations of Sn

Let us look at some examples. For S3 we have the following classes and corre-
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sponding partitions and Young diagrams

Class {e} {(12), (23), (31)} {(123), (321)}

Cycles struct. ν1 = 3, ν2 = ν3 = 0 ν1 = ν2 = 1, ν3 = 0 ν1 = ν2 = 0, ν3 = 1

(λ1, λ2, λ3) (3, 0, 0) (2, 1, 0) (1, 1, 1)

Partition [3] [21] [111]

Young diag.

I In the following we define the permutations mathematically. For this purpose we
imagine non-identical objects which are placed in the individual identical boxes.
Then we denote the a permutation by 1 2 3 · · · N

b1 b2 b3 · · · bN


meaning that the object which initially was in the first box has now been moved
into box b1, the one in the second box is transferred to b2, etc.

I There are several different ways to express the distribution of objects into boxes or
that of particles into states (equal particles different quantum states). Let α, β, γ, δ
be four nonidentical objects or four nonidentical one-particle quantum states (wave-
functions). Then

α1β2γ3δ4

means that

QM interpretation

object α is situated in box 1

object β is situated in box 2

object γ is situated in box 3

object δ is situated in box 4

or



particle 1 is in state α

particle 2 is in state β

particle 3 is in state γ

particle 4 is in state δ

We shall use the QM interpretation. In this interpretation, each box is a particle
and the labeling is the state in which it is in.

I Let us look at one example1 2 3 4

2 3 4 1

α1β2γ3δ4 = α2β3γ4δ1
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Now particle 2 is in state α, and so on. We can simplify this notation even more if
we agree that the state of particle 1 is always noted first, followed by the state of
particle 2 and so on. In this way the above transformation reads1 2 3 4

2 3 4 1

αβγδ = δαβγ .

I Sometimes the state is simply written as ψ(1, 2, 3, 4) instead of α1β2γ3δ4. This is
more general in so far as ψ(1, 2, 3, 4) need not necessarily be a product of one-particle
states (αβγδ). In this notation the correspondence to ψ(2, 3, 4, 1) is

ψ(2, 3, 4, 1) ⇔ α2β3γ4δ1 or δαβγ .

I As an example let us consider for simplicity states of 2 identical particles (S2)
with the two-particle state ψ(1, 2). The numbers 1 and 2 comprise all coordinates
(position, spin, isospin) of the particles 1 and 2 respectively. In order to examine
the symmetry under exchange of particles, we note that in general ψ(1, 2) does not
have any particular symmetry. But we can always build a symmetric (ψs) and an
antisymmetric (ψa) state out of ψ(1, 2), namely

ψs = ψ(1, 2) + ψ(2, 1) = , ψa = ψ(1, 2)− ψ(2, 1) =

with ψ(2, 1) = P̂12ψ(1, 2). Both, ψs as well as ψa, are eigenstates of the permutation

operator P̂12. Here each particle is associated with a box; two boxes in one row
describe a symmetric state; two boxes in one column describe an antisymmetric
state.

I We can define the symmetrizer Ŝ12 and antisymmtrizer Â12 as

S12 = e+ P12 , A12 = e− P12

Then

S12ψ(1, 2) =(e+ P12)ψ(1, 2) = ψ(1, 2) + ψ(2, 1) = ψs
A12ψ(1, 2) =(e− P12)ψ(1, 2) = ψ(1, 2)− ψ(2, 1) = ψa

I Anticipating our use of exchange of arbitrary particle label number i ↔ j we
define the general symmetrizers and antisymmetrizers

Sij = e+ Pij Aij = e− Pij
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To obtain the state with the required symmetry property from a Young Tableau we
define the Young operator

Ŷ =

( ∑
columns

Aν

)(∑
rows

Sλ

)
which then acts on ψ(1, 2, 3, . . .).

I Some examples of Young operators are:

F Totally symmetric Young diagram

1 2 → Ŷ = (e+ (12))

1 2 3 → Ŷ = (e+ (12) + (13) + (23) + (123) + (132))

F Totally antisymmetric Young diagram

1
2 → Ŷ = (e− (12))

1
2
3

→ Ŷ = (e− (12)− (13)− (23) + (123) + (132))

F Mix Young diagram

1 2
3 → Ŷ = (e− (13))(e+ (12))

1 3
2 → Ŷ = (e− (12))(e+ (13))

5.1.2 The connection between SU(2) and SN

I To illustrate the basic techniques involved, we consider the spin state of a two-
electron system:

F We know from our previous study of SU(2) that we have three symmetric
states corresponding to the three possible orientations of the spin-triplet and
an antisymmetric state corresponding to the spin singlet.

F The fundamental representation of SU(2) is spanned by the basis vectors

α =

1

0

 , β =

0

1


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These vectors represent the two states of a particle with spin 1/2. These basis
vectors can be represented by the Young tableaux consisting of one box, i.e.

: α and β

If we erase the contents of the box, the Young diagram symbolizes both
members of the doublet.

F Both irreducible representations of the permutation group S2 are represented
by the Young diagrams

symmetric irrep: , antisymmetric irrep:

F By numbering the boxes we perceive that these diagrams also symbolize irre-
ducible representations of SU(2).

F Let us start with the symmetric state. The boxes can have either α or β inside.
Thus we get

1 2 :


α α = α1α1 = αα

α β = α1β2 + α2β1 = αβ + βα

β β = β2β2 = ββ

The numerical labels represent the identification of particles, i.e. particle 1, 2
. . .. So α2 means particle 2 in quantum state α. We get 3 possible states as we

would expect from a triplet state! We do not need to consider β α because
when we put boxes horizontally, symmetrization is understood. So we deduce
an important rule: Double counting is avoided if we require that the
quantum numbers (label) do not decrease going from the left to the
right, i.e. we are using α < β < γ < . . .. From this argument we learn that

the Young diagram represents three different standard configurations,
i.e. the corresponding multiplets have three dimensions.

F As for the antisymmetric spin-singlet state we have

1
2 :

α
β = α1β2 − α2β1 = αβ − βα

is the only possibility. Clearly
α
α and

β
β are impossible because of the require-

ment of antisymmetry. For a vertical tableaux we cannot have a symmetric

state. Furthermore,
β
α is discarded to avoid double counting. To eliminate the

unwanted symmetry states, we therefore require the quantum number (label)
to increase as we go down.



107

I We take the following to be the general rule

In drawing Young tableaux, going from left to right the number cannot decrease;

going down the number must increase.

We deduced this rule by considering the spin states of two electrons, but you can
believe me or show your self that this rule is applicable for the construction of any
tableaux.

I Let us now consider a three-electron system

F We can construct a totally symmetric spin state using the previous rule

1 2 3 :



α α α = ααα

α α β = ααβ + αβα + βαα

α β β = αββ + βαβ + ββα

β β β = βββ

This method gives four states altogether. This is just the multiplicity of the
j = 3/2 state, which is obviously symmetric as seen from the m = 3/2 case,
where all three spins are aligned up.

F What about the totally antisymmetric states? We may try vertical
tableaux as

α
α
α or

α
β
β

But these are illegal, because the quantum numbers (labels) must increase as
we go down. This is not surprising because total antisymmetry is impossible for
spin states of three electrons; quite generally, a necessary (but not sufficient)
condition for a total antisymmetry is that every state must be different. In
fact, in SU(2) we cannot have three boxes in a vertical column.

F We now define a mixed symmetry tableaux that looks like . Such a tableaux
can be visualized as either a single box attached to a symmetric tableaux

•

or a single box attached to an antisymmetric tableaux

•
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F In any case the dimensionality of is 2; that is, it represents a doublet

(j = 1/2). So no matter how we consider it, must represent a doublet.
But this is precisely what the rule gives. If the quantum number (label) cannot
decrease in the horizontal direction and must increase in the vertical direction,
the only possibilities are of arranging the quantum states are

α α
β and

α β
β

However, as we saw we could build two such doublets, i.e.

1 2
3 and

1 3
2

Remember that the numerical labels identify the particles. We have three
particles so we have labels going from 1 to 3. They can not be repeated and
they always have to increase from left to right and up to down. (very similar
to the quantum states labeling but with no repetition on the horizontal lines.)

F We can now build these two doublets wavefunctions

1 2
3 =


α α
β = 2(ααβ − βαα)

α β
β = 2(αββ − ββα)

1 3
2 =


α α
β = 2(αβα− βαα)

α β
β = 2(αββ − βαβ)

The second doublet is antisymmetric in the first two particles by the first
doublet is not symmetric in the first two. They are also not orthogonal. We
can find such a basis. Let us take the first component of the doublets, i.e. (up
to normalization)

ψa = αβα− βαα and ψ = ααβ − βαα

we can define the orthogonal combination

ψs = ψ − 〈ψ| ψa〉
〈ψa| ψa〉

ψa = ψ − 1

2
ψa
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We then get

MS = • ∝

 −2ααβ + βαα + αβα

2ββα− αββ − βαβ

MA =
•
∝

 (αβ − βα)α

(αβ − βα)β

whereMS(A) indicates mixed symmetry but remembering the pure symmetry
(or antisymmetry) of the first two particles.

F Because there are only two possibilities, must correspond to a doublet. We
can then consider the Clebsch-Gordan series (or angular momentum addition)
as follows

(1/2) ⊗ (1/2) = (1) ⊕ (0)

⊗ = ⊕
(2× 2 = 3 + 1)


(1) ⊗ (1/2) = (3/2) ⊕ (1/2)

⊗ = ⊕
(3× 2 = 4 + 2)


(0) ⊗ (1/2) = (1/2)

⊗ =
(Note: is impossible; 1× 2 = 2)

I In order not to carry unnecessary boxes in the Young diagrams for SU(2) since
any two boxes in a column is a singlet we may just contract them and write∣∣∣∣∣

∣∣∣∣∣ →

5.1.3 Young diagrams for SU(3)

I We now extend our consideration to three primitive objects.

F A box can assume three possibilities now

: α , β , γ .
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The labels 1, 2 and 3 may stand for the magnetic quantum numbers of p-
orbitals in atomic physics or charge states of the pion π+, π0, π−, or the u, d
and s quarks in the SU(3) classification of elementary particles.

Let us start by assuming that the rule inferred using two primitive objects can
be generalized and work out such concepts as the dimensionality; we check to
see whether everything is reasonable.

1 : α β γ : dim 3

AntiSymm



1
2 :

α
β

α
γ

β
γ : dim 3∗ (to distinguish from 3)

:

α
β
γ

: dim 1 (Totally antisymmetrical)

Symm



1 2 :
α α α β α γ

β β β γ γ γ
: dim 6

1 2 3 :

α α α α α β α α γ

α β β α β γ α γ γ

β β β β β γ β γ γ

γ γ γ

: dim 10

Mixed



1 2
3

or

1 3
2

:

α α
β

α β
β

α γ
β

α α
γ

α β
γ

α γ
γ

β β
γ

β γ
γ

: dim 8
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αβ

γ

T3

Y

−1
2

1
2

1
2
√

3

− 1√
3

= 3 = (1, 0) 
state weight (t3, Y )

α
(

1
2 ,

1
2
√

3

)
β

(
−1

2 ,
1

2
√

3

)
γ

(
0,− 1√

3

)

β β α β ,

α
β α α

β γ ,

β
γ α γ ,

α
γ

γ γ
− 2√

3

− 1
2
√

3

1√
3

Y

T3
0 1

2 1−1
2−1



state weight (t3, Y )

α α
(

1, 1√
3

)
α β

(
0, 1√

3

)
β β

(
−1, 1√

3

)
α γ

(
1
2 ,−

1
2
√

3

)
β γ

(
−1

2 ,−
1

2
√

3

)
γ γ

(
0,− 2√

3

)



state weight (t3, Y )

α
β

(
0, 1√

3

)
α
γ

(
1
2 ,−

1
2
√

3

)
β
γ

(
−1

2 ,−
1

2
√

3

)

F These tableaux correspond to the representations of SU(3)

λ1 boxes in first row

λ2 boxes in second row

λ3 boxes in third row

F Once more, for the purpose of figuring out the dimensionality, it is legitimate
to strike out ∣∣∣∣∣∣

∣∣∣∣∣∣ → •

which is a singlet.

F The dimensionality should be familiar at the stage and is given by

d(λ1, λ2, λ3) =
(p+ 1)(q + 1)(p+ q + 2)

2
with p = λ1−λ2 and q = λ2−λ3 .

with (p, q) the same as the values we used to build the weight diagrams.
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5.1.4 Dimensionality and Clebsch-Gordon series

Fundamental Theorem

A tensor corresponding to a Young tableau of a given pattern forms the basis

of an irreducible representation of SU(n). Moreover if we enumerate all possible

Young tableaux under the restriction that there should be no more than n− 1

rows, the corresponding tensors form a complete set, in the sense that all

finite-dimensional irreducible representations of the group are counted only once.

We next give two formulae of the dimensionality of irreducible representa-
tions. If the Young tableau is characterized by the length of its rows [λ1λ2 · · ·λn−1],
define the length differences of adjacent rows as f1 = λ1 − λ2, f2 = λ2 − λ3, · · · ,
fn−1 = λn−1 The dimension of an SU(n) irreducible representation will then be the
number of standard tableaux for a given pattern

d(f1, f2, · · · , fn−1) =(1 + f1)(1 + f2) · · · (1 + fn−1)

×
(

1 +
f1 + f2

2

)(
1 +

f2 + f3

2

)
· · ·
(

1 +
fn−2 + fn−1

2

)
×
(

1 +
f1 + f2 + f3

3

)
· · ·
(

1 +
fn−3 + fn−2 + fn−1

3

)
· · ·

×
(

1 +
f1 + f2 + · · ·+ fn−1

n− 1

)
The formula above is rather cumbersome to use for large values of n; in such

cases the second formulation is perhaps more useful. For this we need to introduce
two definition:

• hook length: For any box in the tableau, draw two perpendicular lines, in
shape of a hook, one going to the right and another going downward. The
total number of boxes that this hook passes, including the original box itself,
is the hook length (hi) associated with the ith box. For example,

h1 = 3 h2 = 1

• distance to the first box: this quantity, defined as Di, is the number of
steps going from the box in the upper left-handed corner of the tableau (the
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first box) to the ith box with each step towards the right counted as +1
unit and each downward step as −1 unit. For example, we have

0 1 2

-1 0

-2

The dimension of the SU(n)-irreducible representation associated with the Young
tableau is given by

d =
∏
i

n+Di

hi
.

The products are taken over all boxes in the tableau.

I Let us see some examples:

F For SU(3) we have

dim

  : 3 4
2

/
3 1
1

=
3× 4× 2

2× 1× 1
= 8

dim


 : 3

2
1

/
3
2
1

= 1

F In SU(6) we can have

dim

  : 6 7
5

/
3 1
1

=
6× 7× 5

2× 1× 1
= 70

dim


 : 6

5
4

/
3
2
1

=
6× 5× 4

3× 2× 1
= 20

I Young diagrams may as we have seen can be used to reduce the product of SU(N)
irreps. Each of the two irreps being multiplied together is represented by its Young
diagram. The squares of the smaller of the diagrams (less boxes) are filled with
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labels, the first row being labeled a, the second row b, the third row c, and so on.
The labeled squares are then attached, one by one, to the larger diagram, forming
new, partly labeled, Young diagrams. (As always, the lengths of the rows of any
Young diagram cannot exceed the length of any higher row.)

I The following restrictions apply at every stage:

• No two squares with the same label may occur in the same column;

• The total number of labels a, counting from right to left starting on the upper
row and then moving down, cannot be less than the number of labels b, which
itself cannot be less than the number of labels c, and so on, at each point in
the reading process, i.e.

na ≥ nb ≥ nc ≥ · · · at any stage.

• The same Young diagram may be produced more than once. If the labeling
is the same in both diagrams, only one is retained. If the labeling is different,
both are retained;

• For application to a specific SU(n), diagrams with more than n rows are
discarded and columns of n squares are removed from the diagrams.

Lets workout an example in SU(3). Let us find the (Clebsch-Gordon) product
of the two irreps

24 : and 8 : .

The first step is to identify the smallest diagram, i.e. 8, and place it on the right
side of the product with appropriate labeling

⊗
a a
b =

(I)

a
a

a

I.1 I.2 I.3
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(II)

I.1 :


a a a

a

∣∣∣∣∣∣
∣∣∣∣∣∣

a

a

II.1 II.2 II.3

I.2 :


a

a a a

∣∣∣∣∣∣
∣∣∣∣∣∣ a
a

II.4 II.5 II.6

II.3 :



∣∣∣∣∣∣
∣∣∣∣∣∣

a

a

∣∣∣∣∣∣
∣∣∣∣∣∣ a
a

a
a

II.7 II.8 II.9

Cases II.4, II.7 and II.8 are the same Young tableaux as II.2, II.3 and II.6,
respectively. The former (or latter) should be excluded. The case II.9 has
more than 3 rows, it is not possible in SU(3).
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(III)

II.1 :


a a b a a

b

∣∣∣∣∣∣
∣∣∣∣∣∣

a a

b

III.1 III.2 III.3

II.2 :


a b

a
a

a b

∣∣∣∣∣∣
∣∣∣∣∣∣

a
a

b

III.4 III.5 III.6

II.3 :


a b

a
b

III.7 III.8

II.5 :


b

a a a a b

∣∣∣∣∣∣
∣∣∣∣∣∣ a a
b

III.9 III.10 III.11

II.6 :


b

a a b

∣∣∣∣∣∣
∣∣∣∣∣∣ab

III.12 III.13 III.14

Cases III.1, III.4, III.7, III.9, III.10, III.12, III.13 read as ba · · · , there-
fore are excluded.

Therefore we have

= ⊕ ⊕ ⊕

⊕ ⊕ ⊕

Therefore, we found

24⊗ 8 = 60⊕ 21⊕ 42⊕ 24⊕ 24⊕ 15⊕ 6
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5.2 The SU(n− 1) subgroups of SU(n)

I The weight diagram of an SU(3) multiplet contains a number of SU(2) multiplets.
Because of the symmetry of the diagrams there is no difference between submulti-
plets related to T -line or others related to U− and V−line. We are now interested
in finding such a decomposition.

I Let us take the octet in SU(3), i.e.

= (1, 1)

The eight corresponding Young tableaux are (NOTE: here we will use numbers to
denote the states. There should be no confusion, since we are not interested in the
wavefunctions. We are only interested in finding where the ”last state”, i.e. the
state that is in SU(n) but not in SU(n−1) is. Instead of using a Greek letter, which
can be difficult for large n, we use numbers.)

1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

1 3
3

2 2
3

2 3
3

I In the case of SU(2), boxes containing the number 3 do not exist. Thus we divide
the tableaux into groups according to the respective position of the boxes containing
a 3:

F First we find two tableaux that don’t contain the number 3, i.e.

1 1
2

1 2
2

In SU(2) the column with two boxes can be omitted (it’s a singlet), so we
obtain a doublet

1 2

F Now we look for a tableau with a single number on the right. There is only
one of this kind

1 3
2

Since the number 3 is meaningless in the case of SU(2), we can neglect this
box and, thus obtain an SU(2) singlet

1
2 = 1
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F There are three tableaux with the number 3 at the bottom

1 1
3

1 2
3

2 2
3

and once again we can neglect the boxes containing the number 3, we obtain
and SU(2) triplet

1 1 1 2 2 2

F Finally we have two tableaux containing the number 3 twice

1 3
3

2 3
3

By erasing the three boxes containing the 3 we get a doublet

1 2

F Summing all together, what we just did was

SU(3) SU(2)

⇒ −→

3
⇒ −→ •

3 ⇒

3
3 ⇒

where in the first step we remove the boxes with 3 and in the second step
contract two boxes in the same column.

We then have

SU(3) SU(2)

8 −→ 1 + 2 + 2 + 3

−→
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I What we just did can be generalized to the group SU(n). Consider all allowed
positions of the boxes in the diagram containing the number n and remove these
boxes. The SU(n − 1) submultiplets are then given by the remaining boxes. For
example, we consider the Young diagram

We have 8 ways of labeling the boxes with n

n
n

n

n
n

n

n
n

n

n
n

n

I The rule here is that n can occur only at the bottom of a column, because the
numbers in the squares have to increase from top to bottom, and cannot decrease
from right to left.

I We thus obtain the decomposition of the SU(n) multiplet into submultiplets of
the group SU(n− 1), i.e.

+ + + + + + +

This decomposition can then be continued down to SU(n− 2), and so on.

I We saw how to decompose the multiplets of SU(n) into multiplets of SU(n− 1).
There is however still and extra symmetry that can be added.

I Let us look back to the SU(3) case. If we choose to break down to SU(2) in the
T -line direction we gave that, out of the general SU(3) generators we are piking only
T1,2,3, i.e.

Ti =
1

2

σi ~0T
~0 0


When acting of a vector (x, y, z) only the subspace xy ”feels” the action of the group.
There is however the generator Y , i.e.

Y =
2√
3
T8 =

1

3


1 0 0

0 1 0

0 0 −2


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which commutes with SU(2)T generators. Therefore, it can generate a U(1) group
that may be preserved in this reduction process.

I We then can have SU(3)→ SU(2)⊗U(1). The three components of the defining
representation, the 3, decompose into a doublet with hypercharge 1/3 and a singlet
with hypercharge −2/3. In general, consider a Young tableau with n boxes and look
at the components in which j indices transform like doublets and n − j transform
like singlets.

I The total hypercharge will be

Yyoung =
1

3
j − 2

3
(n− j)

IWe will denote the n−j singlet components by a Young diagram of n−j boxes in
one row. This is the only valid Young tableau that we can build for these, because
they all have the same index, and thus cannot appear in the same column.

I Lets see same examples:

F The SU(3) 3

→ ( , • )⊕ ( •, )

3 → 2 1
3
⊕ 1− 2

3

F The SU(3) 3̄

→ ( , • )⊕ ( , )

3̄ → 1 2
3
⊕ 2− 1

3

F The SU(3) 6

→ ( , • )⊕ ( , )⊕ ( •, )

6 → 3 2
3
⊕ 2− 1

3
⊕ 1− 4

3

F The SU(3) 8

→ ( , • )⊕ ( , )⊕ ( , )⊕ ( , )

8 → 21 ⊕ 10 ⊕ 30 ⊕ 2−1
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I Now we can generalize the discussion of SU(2) ⊗ U(1) ⊂ SU(3). Consider the
SU(N)× SU(M)×U(1) subgroup of SU(N +M) in which the SU(N) acts on the
first N indices and the SU(M) acts on the last M indices. Both of these subgroups
commute with a U(1) which we can take to be M on the first N indices and N on
the last M , i.e.

H ∝



N


M

· · ·

M

−N

· · ·

−N

M


I The fundamental as then the decomposition

= ( , • )M ⊕ ( •, )−N

I For a general representation, the U(1) charges are given by nM − mN , with n
the number of boxes of the irrep in SU(N) and m the number of boxes in the irrep
of SU(M). A trivial case is the fundamental. Other cases can be found by products
of the fundamental irrep.

I For example

⊗ = ⊕

[
( , • )⊕ ( •, )

]
⊗
[
( , • )⊕ ( •, )

]
= ( , • )⊕ ( , • )⊕ 2( , )⊕ ( •, )⊕ ( •, )

Thus

SU(N +M)→ SU(N)⊗ SU(M)⊗ U(1)

→ ( , • )2M ⊕ ( , )M−N ⊕ ( •, )−2N

→ ( , • )2M ⊕ ( , )M−N ⊕ ( •, )−2N
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I Notice that if we take M = 1, the SU(M) group disappears, because there
is no algebra SU(1) - it has no generators. However, the construction described
above still works. This is essentially what we used for the decomposition of SU(3)
representations under the SU(2)× U(1) subgroup.

I Another situation is SU(N) × SU(M) ∈ SU(NM). It arises only for SU(k)
where k is not a prime, and thus this embedding does not show up in SU(2) or
SU(3). Under the SU(N) × SU(M) subalgebra generated by these matrices, the
NM representation transforms like (N,M), i.e.

→ ( , )

If we compute the product we get

⊗ → ( , )⊗ ( , )

⇔ ⊕ → ( ⊕ , ⊕ )

Thus

SU(NM)→ SU(N)⊗ SU(M)

→ ( , )⊕ ( , )

→ ( , )⊕ ( , )

The dimensions have to match for the original and the pieces.

5.3 Tensor and Young’s diagrams

I Let ψa, φa, . . . denote various spinors that transform as the basis of the funda-
mental representation:

ψa → ψ′a = S b
a ψb (a, b = 1, 2, 3)

under a transformation of SU(N) with matrix elements Sab . Covariant spinors
spanning the space of the conjugate representation, which have components labeled
by upper indices, must transform so as to make the inner product θaψa invariant:

θa → θ′a = θb
(
S†
) a

b
(a, b = 1, 2, 3)

I Spinors of the types ψa and θa are the simplest nontrivial examples of tensors.
Generally, tensors are objects whose components, carrying both upper and lower in-
dices, transform among themselves, with the upper indices transforming covariantly
and the lower, contravariantly.
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I If n stands for the number of upper indices, and m, the number of lower indices,
the tensor will be denoted by T (n,m) and its rank is defined by the ordered set of
integers (n,m).

F For instance, the mixed tensor of rank (2, 1) transforms as

T abc → T ′abc = Saa′T
a′

b′c′
(
S†
)b′
b

(
S†
)c′
c
,

while the tensor of rank (1, 2) transforms as

T abc → T ′abc = Saa′S
b
b′T

a′b′

c′
(
S†
)c′
c
,

The interest in these examples is that T abc obeys the same transformation rule

as
(
T bca
)∗

, a result which generalizes to tensors of arbitrary ranks, i.e. T (n,m)
transforms exactly as T ∗(m,n).

I There exist three invariant tensors, whose components are unchanged under
the transformations of SU(3):

F Kronecker delta

δab =

 1 , if a = b ,

0, otherwise .

F Levi-Cività

εabc =


1 , if a, b, c is an even permutation of 1,2,3 ,

−1 , if a, b, c is an odd permutation of 1,2,3 ,

0, otherwise .

F Contravariant Levi-Cività εabc, which is numerically equal to εabc, so that
ε123 = +1 and

εabmε
mcd = δcaδ

d
b − δdaδcb .

I As we have already see, in SU(3) the fundamental representation is not equiva-
lent to its conjugate. Therefore, a covariant spinor θa is not linearly related to a
contravariant spinor, and vice versa.

I It is rather related to an antisymmetric second-rank contravariant tensor

θa = εabcψbφc

That θa is indeed a first-rank contracovariant tensor follows from the invariance of
εabc.
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I Therefore a lower index cannot be made equivalent to an upper index (contrarily
to SU(2)), and there must exit mixed tensors carrying indices of both types.

Lets see some examples:

F The irreducible tensor (1, 1)

T ab → T ab −
1

3
δabT

a
a

F The irreducible tensor (2, 0)

Tab →
1

2
(Tab + Tba)︸ ︷︷ ︸

Sab

+
1

2
(Tab − Tba)︸ ︷︷ ︸

Aab

These two objects, Sab and Aab, transform as tensors and the transformations
do not mix them. Therefore, the general tensor T ab can be decomposed into
two irreducible tensor, the 2-index symmetric and two-index antisymmetric
one.

I Thus, irreducible tensor of SU(3) are traceless and totally symmetric in the
indices of the same type. Because of these restrictions, not all components of an
irreducible tensor are linearly independent.
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(n,m) dim Tableau Tensor

(0, 0) 1 1(εabc)

(1, 0) 3 Ta

(0, 1) 3̄ T a

(2, 0) 6 Tab

(0, 2) 6̄ T ab

(1, 1) 8 = 8̄ T ba

(∑3
a=1 T

a
a = 0

)
(3, 0) 10 Tabc

(0, 3) 1̄0 T abc

(2, 1) 15 T cab

(∑3
a=0 T

a
ab = 0

)
(1, 2) 1̄5 T bca

(∑3
a=0 T

ab
a = 0

)
(4, 0) 15′ Tabcd

(0, 4) 1̄5
′

T abcd

(3, 1) 24 T dabc

(∑3
a=1 T

a
abc = 0

)
(1, 3) 2̄4 T bcda

(∑3
a=1 T

abc
a = 0

)
(2, 2) 27 = 2̄7 T cdab

(∑3
a=1 T

ad
ab = 0

)
I Let us start with the product of a fundamental and anti-fundamental representa-
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tion, i.e. 3̄⊗ 3

ψa ∼ 3 ∼ , ψa ∼ 3̄ ∼

ψaψb = 1
3δ
a
bψ

aψa +
(
ψaψb − 1

3δ
a
bψ

aψa
)

3̄ ⊗ 3 = 1 ⊕ 8

We the have

S =
1√
3
ψaψa

Ma
b =ψaψb −

1

3
δabψ

aψa

=

1
3

(2ψ1ψ1 − ψ2ψ2 − ψ3ψ3) ψ1ψ2 ψ1ψ3

ψ2ψ1
1
3

(−ψ1ψ1 + 2ψ2ψ2 − ψ3ψ3) ψ2ψ3

ψ3ψ1 ψ3ψ2
1
3

(−ψ1ψ1 − ψ2ψ2 + 2ψ3ψ3)


I Let us look at the product of two fundamental representations

ψaψb = 1
2 (ψaψb + ψbψa) + 1

2 (ψaψb − ψbψa)

3 ⊗ 3 = 6 ⊕ 3̄



Chapter 6

Is it Space? Is it Time? NO!
It’s Space-Time!
Lorentz and Poincaré Groups

6.1 Lorentz group

I The Lorentz group is the set of all transformations that preserve the inner
product of Minkowski space

xµxµ = xµηµνx
ν = (x0)2 − (x1)2 − (x2)2 − (x3)2 , with ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


This is nothing more than the definition of

O(1, 3) =
{

Λ ∈ GL(4,R)| ΛTηΛ = η
}

(6.1)

with η being the metric. In other words, the Lorentz group preserves the metric.

F From the definition above we have

det(ΛTηΛ)︸ ︷︷ ︸
det(Λ)det(η)det(Λ)=−1

= det(η)︸ ︷︷ ︸
−1

⇒ det(Λ) = ±1

F For µ = ν = 0

Λ0
σησρΛ

ρ
0 =

(
Λ0

0

)2 −
∑
i

(
Λ0

i

)2
= 1 = η00

Thus (
Λ0

0

)2 ≥ 1 ⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1

127
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With ↑ denoting orthochronous (preserves the direction of time) components,
and ± denoting the determinant sign (if the group component is “proper” or not),
we can divide the Lorentz group into four components:

det(Λ) = ±1

sign
(
Λ0

0

)
= ±1

 −→



det(Λ) = +1, Λ0
0 ≥ 1 : SO(1, 3)↑ (SO(1, 3)↑+)

det(Λ) = +1, Λ0
0 ≤ −1 : ΛPΛTSO(1, 3)↑ (SO(1, 3)↓+)

det(Λ) = −1, Λ0
0 ≥ 1 : ΛPSO(1, 3)↑ (SO(1, 3)↑−)

det(Λ) = −1, Λ0
0 ≤ −1 : ΛTSO(1, 3)↑ (SO(1, 3)↓−)

with SO(1, 3)↑ named the proper orthochronous Lorentz group or restricted
Lorentz group. In the standard representation, the parity transformation and
time reversal operations are denoted by

Parity: ΛP =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 Time-reversal: ΛT =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



I The 4 components are disconnected in the sense that it is not possible to get a
Lorentz transformation of another component just by using transformations of one
component.

I We can restrict our search for representations of the Lorentz group, to represen-
tations of SO(1, 3)↑ and combine this with representations for ΛP,T .

6.1.1 Group and Algebra structure

I Let us use the defining relation of the Lorentz group to construct an explicit
matrix representation.

I First let’s think for a moment about what we are trying to do. The Lorentz group,
when acting on 4-vectors (Minkowski space R(1,3)), is given by real 4× 4 matrices.

I A generic real 4 × 4 matrix has 16 parameters. The defining condition of the
Lorentz group, which is in fact 10 conditions, restricts this to 6 parameters. This is
the numbers of linearly independent generators. (N(N−1)/2 for generic orthogonal
groups.)

I Let us then find these generators:
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F First note that the rotation matrices of 3D Euclidean space leave time un-
changed, we have

−RT I3R = −RTR = −I3

which is the defining condition for O(3). Together with det(Λ) = +1 we have
the SO(3) group. Such a Lorentz transformation is given by

Λrot =

 1 ~0

~0T R3×3


The corresponding infinitesimal generators (Lie algebra) are

Ax =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , Ay =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , Az =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


Later we will use the the hermitian combinations, i.e. Li = iAi.

F Assuming that we can generate group elements with eαaK
a

and expanding
ΛηΛT = η, we have up to first order in α

(1 + αaK
a)η(1 + αbK

b)T = η ⇒ (6.2)

Kaη = −η(Ka)T for first order in αa . (6.3)

A transformation generated by these generators is called a boost, i.e. a change
into a coordinate system that moves with a different constant velocity.

F Assume we boost in the x-axis. The generator takes the form

Kx =


a b 0 0

c d 0 0

0 0 0 0

0 0 0 0


We just need to solve the system for the 2× 2 non-zero block, i.e.

a b

c d

1 0

0 −1

 = −

1 0

0 −1

a c

b d

→


a = −a

−c = −b

b = c

−d = d

→

 a = d = 0

b = c
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Therefore, the infinitesimal generator of the boost along the x-axis (with the
appropriate normalization) is

Kx =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


and equivalently for the boosts along y- and z-axis

Ky =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , Kz =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


F Note that

Exp

φ
0 1

1 0

 =
∞∑
n=0

φn

n!

0 1

1 0

n

=
∞∑
n=0

φ2n

(2n)!
I2 +

∞∑
n=0

φ2n+1

(2n+ 1)!

0 1

1 0


= coshφI2 + sinhφ

0 1

1 0

 =

coshφ sinhφ

sinhφ coshφ


F The group elements are

Λx =


coshφ sinhφ 0 0

sinhφ coshφ 0 0

0 0 1 0

0 0 0 1

 , Λy =


coshφ 0 sinhφ 0

0 1 0 0

sinhφ 0 coshφ 0

0 0 0 1



Λz =


coshφ 0 0 sinhφ

0 1 0 0

0 0 1 0

sinhφ 0 0 coshφ


An arbitrary boost can be composed by multiplications of these 3 generators.
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I To understand how the generators transform, we simply have to act with the
parity operation ΛP and the time reversal operator ΛT on the matrices Li, Ki:

Parity: ΛPLiΛ
−1
P = Li

ΛPKiΛ
−1
P = −Ki

(6.4)

Time-reversal: ΛTLiΛ
−1
T = Li

ΛTKiΛ
−1
T = −Ki

This can be checked by counting minus signs appearing in the multiplication with
ΛP/T .

I Thus we have
Li −→︸︷︷︸

P,T

Li and Ki −→︸︷︷︸
P,T

−Ki

I The proper orthochronous Lorentz transformations are given by

Λ = exp
[
~θ. ~A+ ~Φ. ~K

]
= exp

[
−i
(
~θ.~L+ ~φ. ~K ′

)]
.

with K ′i = iKi and Li = iAi

I Using the explicit form of the generators for SO(1, 3) we can derive the corre-
sponding Lie algebra

[Li, Lj] = iεijkLk , [Li, K
′
j] = iεijkK

′
k , [K ′i, K

′
j] = −iεijkLk

I The two type of generators do not commute with each other. While the rotation
generators close under commutation, the boost generators do not.

I We can define two sets of operators from the old ones that do close under com-
mutation and commute with each other

N±i =
Li ± iK ′i

2

which lead to the commutation relations

[N+
i , N

+
j ] = iεijkN

+
k︸ ︷︷ ︸

su(2)+

, [N−i , N
−
j ] = iεijkN

−
k︸ ︷︷ ︸

su(2)−

, [N+
i , N

−
i ] = 0

IWe have, therefore, discovered that the Lie algebra so(1, 3)↑+ consists of two copies
of the Lie algebra su(2)
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I This is great news, because we know how to construct all irreducible represen-
tations of the su(2) Lie algebra. Note, however, that the group SU(2)+ ⊗ SU(2)−
is compact but the Lorentz group is not. Even though the two groups share the
same Lie algebra, one corresponds to the exponentiation of {iN+, iN−}, whereas
the other to the exponentiation of {iL, iK ′}, in both cases with real coefficients in
the exponent (real algebras).

I Although irreducible representations of one group give irreducible representations
of the other, some important properties of the representation, such as unitarity, are
not preserved.

I We note that, for any unitary representation, the generators must be hermi-
tian. While the set {N+, N−} has only hermitian operators the K ′ in {L,K ′} is
anti-hermitian. The non-unitary nature of finite dimensional representations of the
Lorentz group is an important consideration for physical applications.

I In particular, these representations cannot correspond to physical states, since all
symmetry operations must be realized as unitary operators on the space of physical
states.

I By deriving the irreducible representations of the Lie algebra of the Lorentz group,
we find the irreducible representations of the covering group of the Lorentz group,
if we put the corresponding generators into the exponential function.

I Some of these will be representations of the Lorentz group, but we will find more
than that. Each irreducible representation of the su(2) algebra can be labeled by
the scalar value j of the Casimir operator. Therefore, we know that we can label
the irreducible representations of the covering group, i.e. SL(2,C) of the Lorentz
group by two integer or half integer numbers: (j1, j2) with (2j1 + 1)(2j2 + 1) degrees
of freedom.

I The Lie group SL(2;C) is the set of all complex 2× 2 matrices with determinant
equal to unity. The Lie algebra sl(2;C) consists of all traceless complex 2 × 2
matrices. There are six basis elements if sl(2;C) is viewed as a real Lie algebra. We
choose the form

a1 =

1 0

0 −1

 , a2 =

0 1

0 0

 , a3 =

0 0

1 0


a4 =i

1 0

0 −1

 , a5 = i

0 1

0 0

 , a6 = i

0 0

1 0


Clearly, ak+3 = iak (k = 1, 2, 3), so sl(2;C) is six-dimensional as a real Lie algebra,

but only three-dimensional as a complex one (it is then s̃u(2), i.e the complexified
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su(2) algebra, or ˜sl(2;R)), as the six ak are not linearly independent over the complex
numbers.

The real Lie algebra sl(2;C), which is itself a simple Lie algebra, has a complex-

ification that is not simple, but rather semi-simple: ˜sl(2;C) ∼= s̃u(2)⊕ s̃u(2).

6.2 Lorentz group representations

6.2.1 The (0, 0) representation

I The lowest order representation is as for SU(2) trivial, because the vector space
is 1D for both copies of the su(2) Lie algebra. Our generators must therefore be
1× 1 matrices and the only 1× 1 matrices fulfilling the commutation relations are
the trivial 0

N+
i = N−i = 0 → e−iαiN

+
i = e−iβiN

−
i = 1 .

I Therefore, the (0, 0) representation of the Lorentz group acts on objects that
do not change under Lorentz transformations. This is called the Lorentz scalar
representation.

6.2.2 The
(

1
2, 0
)

representation

I In this representation we use the 2D representation for one copy of the su(2)
algebra N+

i , i.e. N+
i = σi/2, and the 1D representation for the other N−i , i.e.

N−i = 0. Therefore we get

N−i =
Li − iK ′i

2
= 0 ⇒ Li = iK ′i .

Therefore

N+
i =

σi
2

=
Li + iK ′i

2
= iK ′i

Therefore

K ′i = − i
2
σi and Li =

1

2
σi

The Lorentz group representations are then given by 1

Rotation: Rθ = ei
~θ.~L = ei

~θ.~σ2 Boost: Λφ = ei
~φ. ~K ′ = e

~φ.~σ2 (6.5)

1Following our convention from previous sections, it would be more consistent to include a minus sign in the
exponent, however, we omit this in our definition in (6.5).
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For example, a rotation around the x-axis is given by

Rx(θ) = eiθ
σ1
2 =

 cos θ
2 i sin θ

2

i sin θ
2 cos θ

2

 (6.6)

I One important thing to notice is that here we have complex 2 × 2 matrices,
representing the Lorentz transformations. These transformation certainly do not
act on the four vectors of Minkowski space, because these have 4 components.

I The two-component objects this representation acts on are called left-chiral
spinors

χL =

(χL)1

(χL)2


I Spinors in this context are two component objects. A possible definition for left-
chiral spinors is that they are objects that transform under Lorentz transformations
according to the

(
1
2 , 0
)

representation.

I Spinors, as we know, have properties that usual vectors do not have. For instance,
the factor 1/2 in the exponent. This factor shows us that a spinor is after a rotation
by 2π not the same but gets a minus sign.

6.2.3 The
(
0, 1

2

)
representation

I Let us now turn to the
(
0, 1

2

)
representation. This representation can be con-

structed analogous to the
(

1
2 , 0
)
. This time we have

N+
i =

Li + iK ′i
2

= 0

N−i =
σi
2

=
Li − iK ′i

2

−→


K ′i =

i

2
σi

Li =
1

2
σi

I We then get

Rotation: Rθ = ei
~θ.~L = ei

~θ.~σ2 Boost: Λφ = ei
~φ. ~K ′ = e−

~φ.~σ2

I Therefore, rotations are the same as in the
(

1
2 , 0
)

representation, but boosts differ
by a minus sign in the exponent. Therefore, both representations act on objects
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that are similar but not the same. We call these objects right-chiral spinors

χR =

(χR)1

(χR)2


The generic name for left- and right-chiral spinors is Weyl spinors.

6.2.4 Van der Waerden notation

I There is a deep connection between the objects transforming according to the(
1
2 , 0
)

representation (L spinors) and the objects transforming according to the
(
0, 1

2

)
representation (R spinors).

I In this section we will use the notation2

left-chiral spinor: χL = χa right-chiral spinor: χR = χȧ . (6.7)

We also define the complex conjugated versions of these fields

(χL)∗ = χȧ (χR)∗ = χa (6.8)

We will soon see why it makes sense to define the right-chiral spinor with a dotted
index.
I We also introduce the spinor “metric”, used in transforming spinors from one
chirality to another

εab =

 0 1

−1 0

 (Levi-Civita symbol)

I Let us see how the charge conjugated field χCL ≡ εχ∗L transforms under boosts

boost: χCL → χ′CL =ε(χ′L)∗

=ε(e
1
2
~φ.~σχL)∗

=ε(e
1
2
~φ.~σ (−ε)(ε)︸ ︷︷ ︸

=1

χL)∗

= ε(e
1
2
~φ.~σ∗(−ε)︸ ︷︷ ︸

use: εσ∗i (−ε)=−σi

εχ∗L︸︷︷︸
χCL

)

=e−
1
2
~φ.~σχCL

2Other notations frequently occur!
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which is exactly the transformation behavior of a right-chiral spinor. The behavior
under rotations is unchanged due to the additional i,

rotation: χCL → χ′CL = ε(χ′L)∗ = ε(e
i
2
~θ.~σχL)∗ = e

i
2
~θ.~σε(χL)∗ ,

again as for right-chiral fields. We thus conclude that χCL transforms as, i.e., is a
right-chiral field.

I Since complex conjugation adds or removes a dot from an index, and since εχ∗L =
χR we find that our “metric” raises or lowers an index

εχL = εacχc = χa

This is analogous to the metric notation in special relativity.

I Let’s see how to build a Lorentz invariant

F From the transformation behavior of a left-chiral spinor

χL = χa → χ′a =
(
e
i
2
~θ.~σ+ 1

2
~φ.~σ
)b
a
χb

we can derive how a spinor with a lower dotted index transforms

χ∗L = χ∗a = χȧ → χ′ȧ = (χ′a)
∗ =

[(
e
i
2
~θ.~σ+ 1

2
~φ.~σ
) b

a

]∗
χ∗b

=
(
e
−i
2
~θ.~σ∗+ 1

2
~φ.~σ∗
) ḃ

ȧ
χḃ

F From the transformation behavior of a right-chiral spinor

χR = χȧ → χ′ȧ =
(
e
i
2
~θ.~σ− 1

2
~φ.~σ
)ȧ

ḃ
χḃ

we can derive how a spinor with an upper undotted index transforms

χ∗R = (χȧ)∗ = χa → χ′a = (χ′ȧ)∗ =

[(
e
i
2
~θ.~σ− 1

2
~φ.~σ
)ȧ

ḃ

]∗
(χḃ)∗

=
(
e
−i
2
~θ.~σ∗− 1

2
~φ.~σ∗
)a

b
χb

F To be able to write products of spinors that do not change under Lorentz
transformations, we need one more ingredient, ~a.~b = ~aT~b. In the same spirit
we must not forget to transpose one of the spinors in the spinor product.
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F The term χaχa is invariant under Lorentz transformations

χaχa → χ′aχ′a =
[(
e−

i
2
~θ.~σ∗− 1

2
~φ.~σ∗
)a

b
χb
] [(

e
i
2
~θ.~σ+ 1

2
~φ.~σ
) c

a
χc

]
=χb

[(
e−

i
2
~θ.~σ†− 1

2
~φ.~σ†
) a

b

(
e
i
2
~θ.~σ+ 1

2
~φ.~σ
) c

a

]
︸ ︷︷ ︸

δcb

χc

=χcχc

F In the same way we can combine an upper, dotted index with a lower, dotted
index. In contrast, a term of the form χȧχa = (χȧ)Tχa = χTRχL is not invariant
under Lorentz transformations (Check this). Therefore a term combining a
left-chiral with a right-chiral spinor is not Lorentz invariant. We conclude
that we must always combine an upper index with a lower index of the same
type

a
a or ȧ

ȧ

Or formulated differently, we must combine the complex conjugate of a right-
chiral spinor with a left-chiral spinor

χ†RχL = (χ∗R)TχL = (χa)Tχa = χaχa

or

χ†LχR = (χ∗L)TχR = (χȧ)
Tχȧ = χȧχ

ȧ

I In addition, we have now another justification for calling εab the spinor metric,
since

χaχ
a = χaε

abχb (Minkowski metric: xµy
ν = xµη

µνyν)

After setting up this notation we can write the spinor ”metric” with lowered indices
as

εab =

0 −1

1 0


because we need (−ε) to get from χR to χL.

IWe can now write the two transformation operators as one object Λ. For example,
when it has dotted indices we know it multiplies with a right-chiral spinor and we
know which transformation operator to choose

χR →χ′R = χ′ȧ = Λȧ
ḃ
χḃ =

(
ei
~θ.~σ2−~φ.

~σ
2

)ȧ
ḃ
χḃ

χL →χ′L = χ′a = Λ b
a χb =

(
ei
~θ.~σ2 +~φ.~σ2

) b

a
χb

Therefore

Λ( 1
2 ,0)

=
(
ei
~θ.~σ2 +~φ.~σ2

)
≡ Λ b

a and Λ(0, 12)
=
(
ei
~θ.~σ2−~φ.

~σ
2

)
≡ Λȧ

ḃ
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6.2.5 The
(

1
2,

1
2

)
representation

I For this representation we use the 2D representation, for both copies of the
su(2) Lie algebra N+

i and N−i . Let’s first have a look at what kind of objects our
representation acts on.

I The copies will not interfere with each other, because N+
i and N−i commute.

Therefore, our objects will transform separately under both copies.

I Let’s name the objects we want to examine v. This object will have 2 indices vḃa,
each transforming under a separate two-dimensional copy of su(2).

I Since both indices take on two values (because each representation is 2D), our
object v will have four components. Therefore, the objects can be 2 × 2 matrices,
but it’s also possible to enforce a four component vector form.

I First we look at the complex matrix choice. A general 2×2 matrix has 4 complex
entries and therefore 8 free parameters. As noted above we only need 4. we can
write any complex matrix M as a sum of a hermitian (H† = H) and an anti-
hermitian (A† = −A) matrix: M = H + A. In addition, we will show in a moment
that our transformations in this representation always transform a hermitian 2 ×
2 matrix into another hermitian 2 × 2 matrix and equivalently an anti-hermitian
matrix into another anti-hermitian matrix. This means that hermitian and anti-
hermitian matrices are invariant subsets. Therefore, working with a general matrix
here, corresponds to having a reducible representation. We can therefore assume
that our irreducible representation acts on hermitian 2× 2 matrices.

Instead of examining vḃa, we will look at vaḃ, because then we can use the Pauli
matrices as a basis for hermitian matrices, i.e.

vaḃ = vνσ
ν
aḃ

= v0

1 0

0 1

+ v1

0 1

1 0

+ v2

0 −i

i 0

+ v3

1 0

0 −1

 .

where vḃa = vµσ
µ
aċε

ḃċ. We therefore write a general hermitian matrix as

vaḃ =

 v0 + v3 v1 − iv2

v1 + iv2 v0 − v3


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We now have a look at how vaḃ transforms, thus we get

v → v′ = v′
aḃ

=Λ c
a Λ ḋ

ḃ
vcḋ

=
(
ei
~θ.~σ2 +~φ.~σ2

) c

a

(
e−i

~θ.~σ
∗
2 +~φ.~σ

∗
2

) ḋ

ḃ
vcḋ

=
(
ei
~θ.~σ2 +~φ.~σ2

) c

a
vcḋ

(
e−i

~θ.~σ
†

2 +~φ.~σ
†

2

)ḋ
ḃ

=
(
ei
~θ.~σ2 +~φ.~σ2

) c

a
vcḋ

(
e−i

~θ.~σ2 +~φ.~σ2

)ḋ
ḃ

hermitian

Let’s boost along the z-axis

vaḃ → v′
aḃ

=
(
eφ

σ3
2

) c

a
vcḋ

(
eφ

σ3
2

)ḋ
ḃ

=

eφ2 0

0 e−
φ
2

 v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

eφ2 0

0 e−
φ
2


=

eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)


Therefore, using

v′
aḃ

=

 v′0 + v′3 v′1 − iv′2
v′1 + iv′2 v′0 − v′3

 =

eφ(v0 + v3) v1 − iv2

v1 + iv2 e−φ(v0 − v3)


we get

→ v′0 + v′3 = eφ(v0 + v3) = (coshφ+ sinhφ)(v0 + v3)

→ v′0 − v′3 = e−φ(v0 − v3) = (coshφ− sinhφ)(v0 − v3)

The addition an subtraction of both equations yields

→ v′0 = coshφv0 + sinhφv3

→ v′3 = sinhφv0 + coshφv3

which is exactly what we get using the 4-vector formalism
v′0

v′1

v′2

v′3

 =


coshφ 0 0 sinhφ

0 1 0 0

0 0 1 0

sinhφ 0 0 coshφ




v0

v1

v2

v3

 =


coshφv0 + sinhφv3

v1

v2

sinhφv0 + coshφv3


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This is true for an arbitrary Lorentz transformation.

IWhat we have shown here is that the
(

1
2 ,

1
2

)
representation is the vector representa-

tion. We can simply transform our transformation laws by using the enforced vector
form, because multiplying a matrix with a vector is simpler than the multiplication
of 3 matrices.

I Nevertheless, we have seen how the familiar 4-vector is related to the more funda-
mental spinors. A 4-vector is a rank-2 spinor, which means a spinor with 2 indices
that transforms according to the

(
1
2 ,

1
2

)
representation of the Lorentz group.

I On can then write
D( 1

2 ,
1
2 ) = D( 1

2 ,0) ⊗D(0, 12 )

In general, one can obtain higher irreps by decomposition of direct products; it can
be shown that the following relation holds

D(j1,j2) ⊗D(j′1,j
′
2) = D(j1+j′1,j2+j′2) ⊕D(j1+j′1−1,j2+j′2) ⊕ . . .⊕D(|j1−j′1|,|j2−j′2|)

which is the analogue of the one found for SU(2).

I We see that an irrep of SO(1, 3)↑ contains, in general, several irreps of SU(2).
We know that each element of the basis of Dj describes one of the (2j + 1) states
of a particle with spin j. If we want to keep this correspondence between irreps
and states with definite spin also in the case of SO(1, 3)↑, we have to introduce
supplementary conditions which reduce the number of independent basis elements.

I If we want the basis of D(j,j′) to describe a unique value of spin (we choose for it
the highest value, since the lower ones can be described by lower irreps), we have
to keep only 2(j + j′) + 1 elements out of (2j + 1)(2j′ + 1), so that these can be
grouped together to form the basis of D(j+j′) in SU(2).

I If one restricts oneself to the subgroup of rotations, the representations are no
longer irreducible, and they can be decomposed in terms of the irreps of SU(2) as
follows:

D(j,j′) → D(j) ⊗D(j′) = D(j+j′) ⊕ . . .⊕D(|j−j′|)

The number of conditions is then given by 4jj′ . For instance, in the simple case

D( 1
2 ,

1
2 ) → D(1) ⊕D(0)

we see that a spin 1 particle is described by a four-dimensional basis; so that one
needs a supplementary condition (called in this case Lorentz condition) to leave only
3 independent elements which describes the 3 different spin 1 states.
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6.2.6 Infinite-Dimensional Representations

At this point we already have every finite-dimensional irreducible representation we
need for most problems. Nevertheless, there is another representation, the infinite-
dimensional representation, that is especially interesting, because we need it to
transform physical fields.

Finite-dimensional representations acted on constant one-, two- or four-dimensional
objects so far. In most physical problems the objects we are dealing with are dy-
namically changing in space and time, so we need to understand how such objects
transform. So far we have dealt with transformations of the form

Φa → Φ′a = Mab(Λ)Φb

where Mab(Λ) denotes the matrix of the particular finite-dimensional representation
of the Lorentz transformation. The result of the multiplication with this matrix is
simply that the components of the object in question get mixed and are multiplied
with constant factors.

If our object Φ changes in space and time, it is a function of coordinates Φ ≡ Φ(x)
and these coordinades are affected by the Lorentz transformations, too. In general
we have

xµ → Λµ
νx

ν

where Λµ
ν denotes the vector representation (

(
1
2 ,

1
2

)
representation) of the Lorentz

transformation in question. We have in this case

Φa(x)→Mab(Λ)Φa(Λ
−1x)

Our transformation will therefore consist of two parts. One part, represented by
a finite-dimensional representation, acting of Φa and a second part acting on the
coordinates. This second part will act on an infinite-dimensional vector space and
we therefore need an infinite-dimensional representation. The infinite-dimensional
representation of the Lorentz group is given by the differential operators

M inf
µν = i(xµ∂ν − xν∂µ)

which satisfies the Lorentz algebra and transforms the coordinates as desired. The
transformation of the coordinates is now given by

Φ(Λ−1x) = e−i
ωµν

2 M inf
µν Φ(x)

The complete transformation is then a combination of a transformation generated
by the finite-dimensional representation Mfin

µν and a transformation generated by the

infinitesimal representation M inf
µν of the generators

Φa(x)→
(
e−i

ωµν

2 Mfin
µν

) b

a
e−i

ωµν

2 M inf
µν Φb(x)

→
(
e−i

ωµν

2 Mµν

) b

a
Φb(x)

with Mµν = Mfin
µν +M inf

µν . This is called field representation.
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6.3 Poincaré group

I We can now talk about a different kind of transformation: translation, which
means transformations to another location in spacetime. Translations do not result
in mixing of components and therefore, we need no finite-dimensional representation,
but it’s quite easy to find the infinite-dimensional representation for translations.
These are not part of the Lorentz group, but the laws of nature should be location
independent. The Lorentz group (rotations and boosts) plus translations is called
Poincare group.

Poincare group = Lorentz group + translations

I We know that the Lorentz group consists of four disjoint components, corre-
sponding to the possible choices of the signs of detΛ and Λ0

0. Similarly, the Poicaré
group consists of four disjoint components, each of which contains the corresponding
component of the Lorentz group.

I We shall limit ourselves to the transformations of the proper orthochronous in-
homogeneous Lorentz group, i.e translations and SO(1, 3)↑.

I For simplicity we restrict ourselves to one dimension. In this case an infinitesimal
translation of a function, along the x-axis is given by

Φ(x)→ Φ(x+ ε) = Φ(x) + ∂xΦ(x)ε

which is, of course, again the first term of the Taylor series expansion. It is conven-
tional to add an extra −i and define

Pi ≡ −i∂i .

With this definition an arbitrary, finite translation is

Φ(x)→ Φ(x+ a) = e−ia
iPiΦ(x) = ea

µ∂iΦ(x)

where ai denotes the amount we want to translate in each direction. If we want to
transform to another point in time we use P0 = i∂0.

I The commutation relations of the infinitesimal generators are easily obtained
giving a specific representation of the Lie algebra of P↑. For this purpose it is
convenient to write the group element as a 5× 5 matrixΛ ~aT

0 1


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acting on the vector~x′T
1

 =

Λ ~aT

0 1

~xT
1

 =

Λ~xT + ~aT

1


the infinitesimal generators for the translations are then given by

P0 =



0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, P1 =



0 0 0 0 0

0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


and similar for P3 and P4. In the same representation, the generators Li and K ′i are
replaced by 5× 5 matrices, by adding a fifth row and a fifth column of zeros.

I The generators of the Poicare group are the generators of the Lorentz group Li,
Ki plus the generators of translations in Minkowski space Pµ. The algebra reads

[Li, Lj] =iεijkLk , [Li, K
′
j] = iεijkK

′
k , [K ′i, K

′
j] = iεijkLk

[Li, Pj] =iεijkPk , [Ji, P0] = 0 , [K ′i, Pj] = −iδijP0 , [K ′i, P0] = −iPi

Because this looks like a huge mess it is conventional to write this in terms of Mµν,
which was defined by

Li = εijkMjk , Ki = M0i

With Mµν the Poincare algebra reads

[Pµ, Pν] =0 ,

[Mµν, Pρ] =− i(ηµρPν − ηνρPµ)

[Mµν,Mρσ] =− i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ)

I For this quite complicate group it is very useful to label the representations by
using the fixed scalar values of the Casimir operators. The Poincare group has two
Casimir operators

Casimir Operators:

 momentum squared: PµP
µ ≡ m2 (mass of particle)

Pauli-Lubanski 4-vector: WµW
µ with W µ = εµνρσPνMρσ
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I We have exhibited a 5-dimensional representation of the proper orthochronous
Poincaré group, which is not unitary, since both the generators Pµ and K ′i are
expressed by non-hermitian matrices.

I This is actually a more general statement, since the group is not compact, no
finite-dimensional unitary irreps exist.

I We recall from quantum mechanics the well known fact that the infinitesimal
generators of translations Pµ can be identified with the energy-momentum operators.
Moreover, the infinitesimal generators Mµν can be identified with the components
of the angular momentum tensor.

I For physical applications, we are interested in those irreps in which the operators
Pµ and Mµν are hermitian, since they correspond to dynamical variables, i.e. in the
unitary, and hence infinite-dimensional, irreps of the Poincaré group.

I Representations in the Poincare group will then be labeled by two scalar values:

m (can take arbitrary values) and j = j1 + j2 (half-integer or integer values)

• Spin 0 is described by an object Φ, called scalar, that transforms according
to the (0, 0), called spion 0 representation or scalar representation. (Ex: Higgs
particle)

• Spin 1/2 is described by an object Ψ, called spinor, that transforms according
to the

(
1
2 , 0
)
⊕
(
0, 1

2

)
representation called spin 1

2 representation or spinor
representation. (Ex: electrons and quarks)

• Spin 1 is described by an object A, called vector, that transforms according to
the

(
1
2 ,

1
2

)
, called spin 1 representation or vector representation. (Ex: Photons,

gluons, W± and Z0.)

The irreducible representations of the Poincare group are the mathematical tools
we need to describe all elementary particles.

Much more could have been said about the Poincaré group . . .
For more details see H.F. Jones Chapter 10.
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