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He who can, does; he who cannot teaches.

George Bernard Shaw, Man & Super-
man (1903)

Those who can, do, those who can'’t,
attend conferences.

Daily Telegraph 6th August, (1979)

Introduction

These are rough notes on symmetric functions and the symmetric group and are given purely as a guide.
I intend to outline some of the basic properties of symmetric functions as relevant to application to
problems in chemistry and physics. The partition of integers plays a key role and we shall first make
remarks on partitions in order to establish notation and then go on to consider the standard symmetric
functions, their definitions and their generators. This will lead to the important symmetric functions
known as S—functions so named in honour of Schur. Important properties to be discussed will be their
outer and inner multiplication and plethysm. At that stage we can start to look at specific applications.

Partitions
An ordered partition A of length p = £(\), corresponds to an ordered set of p integers

A= (A, 02,0, 7)) (1)
such that

AL >A2,... 2220 (2)
Unless otherwise stated we shall mean by a partition an ordered partition. Normally we shall omit trailing
ZET0S.

The weight wy of a partition A will be defined as the sum of its parts.
wy=1l= M+, +...+ XN (3)

If | I] = n then A is said to be a partition of n. We shall denot the set of partitions A - n as P, and the
set of all partitions by P. Thus

Py 2 {(4),(31),(2%),(21%),(1")} (4)
Note that the number of repetitions of a given part is often indicated by a superscript m; where m; is
the number of parts of A that are equal to ¢ and will be referred to as the multiplicity of i in A.

Note that in writing Eq.(4) we have given the partitions in reverse lexicographic ordering This
ordering is such that for a pair of partitions (X, u) either A\, = u or the first non-vanishing difference A; — p;
is positive.

Frames of Partitions
We may associate with any partition A a frame F* which consists of £()), left-adjusted rows of boxes
with the i — th row containing \; boxes. Thus for P, we have:-

[TT1] L ]




Conjugate Partitions

The conjugate of a partition \ is a partition A’ whose diagram is the transpose of the diagram of
A. If M = X then the partition ) is said to be self-conjugate. Thus

N |
and

are conjugates while

is self-conjugate.
Skew Frames

Given two partitions A and x such that A O p implies that the frame F* contains the frame F*, i.e. that
X\ > p; for all ¢ > 1. The difference p = A — p forms a skew frame F*/#. Thus, for example, the skew
frame F542/21 has the form |

Note that a skew frame may consist of disconnected pieces.

Frobenius Notation for Partitions

There is an alternative notation for partitions due to Frobenius. The diagonal of nodes in a Ferrers-
Sylvester diagram beginning at the top left-hand corner is called the leading diagonal. The number of
nodes in the leading diagonal is called the rank of the partition. If r is the rank of a partition then let a;
be the number of nodes to the right of the leading diagonal in the i—th row and let b; be the number of
nodes below the leading diagonal in the i—th column. The partition is then denoted by Frobenius as

ai, @2, ..., Qp
<b1’ ba, ..., br > (33)
We note that

ay >as > ...> QA
by >by>...>0b,

and
a1 +ax+...+a+bi+ba+...+b.-+r=n

The partition conjugate to that of Eq.(3.3) is just
b1, by, ..., b 5)
ay, a2, ..., Qr

As an example consider the partitions (543221) and (65421). Drawing their diagrams and marking
their leading diagonal we have

and °

from which we deduce the respective Frobenius designations

42 0 1 5 3 1
5 3 1 an 4 20



Young Tableaux

A Young tableau is an assignment of n numbers to the n cells of a frame F* with A - n according to
some numbering sequence. A tableau is standard if the assignment of the numbers 1,2, ..., n is such that
the numbers are positively increasing from left to right in rows and down columns from top to bottom.
Thus for the partitions of the integer 4 we have the standard Young tableaux

214]

1[2]3] 314]
4

|
|OO»—\
[po]—

o =
W~

2] 3]

4]

\qk|w —

‘plk|l\’> —

[elro]=

We notice in the above examples that the number of standard tableaux for conjugate partitions is the
same. Indeed the number of standard tableaux associated with a given frame F* is the dimension f} of
an irreducible representation {A} of the symmetric group S,,.

Hook lengths and dimensions for S,

The hook length of a given box in a frame F* is the length of the right-angled path in the frame with
that box as the upper left vertex. For example, the hook length of the marked box in

is 8.

Theorem 1: To find the dimension of the representation of S,, corresponding to the frame F*,

divide n! by the factorial of the hook length of each box in the first column of F* and multiply by the
difference of each pair of such hook lengths.

Thus for the partition (543%21) we have the hook lengths

10) |

e

and hence a dimension

543221_18'2><4><5><7><9><2><3><5><7><1><3><5><2><4><2
e 101 x 8! x 6! x5! x3!x1!

= 10720710

It is not suggested that you check the above result by explicit enumeration!



Hook-length Product H{
The irreps {A} of S,, are indexed by the ordered partitions A - N. It is useful to define a hook-length

product
HM = H hij (6)
(CN)EPY

where i labels rows and j columns. Note that

g = g (7)

e Frame-Robinson-Thrall Formula
The S,, dimensional formula may be rewritten as
£= ®)
no A
which is the celebrated result of Frame, Robinson and Thrall.
Specialisation to Two-Row Irreps of C,

Consider a two-part partition (p,7). It is readily seen from the definition of H{*} that

p—r+1
Noting that n = p + r we may specialise Eq. (8) to
pry _PZr L (pr+l
/ prrri\ 7 (10)

In quantum chemistry the Pauli exclusion principle restricts physically realisable irreps of S,, to the
generic type {% + 5, % — S} where N and S are the total electron number and spin respectively. In that
case Eq. (10) becomes

f<zv,s>:2]\f:11 <%N:1q> (11)
which is sometimes called the Heisenberg formula.
Staircase Partitions
A partition of the form (p,p — 1,p — 2,...,2,1) is termed a staircase partition. Such irreps have many

interesting properties.
Exercises

e Show that the p — th staircase partition is of weight

pp+1)
T — 12
: (12
e Show that the hooklength product H? for the p — th staircase partition is
p—1
H? =[] @i+ (13)
=0

e Show that the p = 18 staircase represention is of

353,630, 151,029, 664, 166, 403, 885, 519, 184, 771, 102, 250, 561, 450, 895, 264, 176,910
,003, 150, 360, 627, 549, 788, 542, 182, 043, 325, 740, 180, 684, 537, 821, 357, 203, 782, 730
,400, 746, 242, 708, 749, 607, 205, 510, 228, 035, 502, 080

e How long would it take a supercomputer to check this result by explicit computation?
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With the odd number five strange natures laws

Plays many freaks nor once mistakes the cause

And in the cowslap peeps this very day

Five spots appear which time neer wears away
Nor once mistakes the counting - look within
Each peep and five nor more nor less is seen
And trailing bindweed with its pinky cup
Five lines of paler hue goes streaking up

And birds a many keep the rule alive

And lay five eggs nor more nor less then five
And flowers how many own that mystic power
With five leaves making up the flower

John Clare ~ 1821

2.1 Permutations and the Symmetric Group

Permutations play an important role in the physics of identical particles. A permutation leads to a
reordering of a sequence of objects. We can place n objects in the natural number ordering 1,2,...,n.
Any other ordering can be discussed in terms of this ordering and can be specified in a two line notation

1 2 n

(1) w(2) ... w(n) (2.1)

For n = 3 we have the six permutations

(3
¢

DEGDREE
P (1) (12 o

Permutations can be multiplied working from right to left. Thus

L2 3\ (12 3)_/(1
31 2 2 3 1) \1

[N )
w W
N——

The six permutations in (2.2) satisfy the following properties:

1 2 3

1. There is an identity element <1 2 3).

2. Every element has an inverse among the set of elements.

2. The product of any two elements yields elements of the set.

4. The elements satisfy the associativity condition a(bc) = (ab)c. These conditions establish that the
permutations form a group. In general the n! permutations form the elements of the symmetric

group Sy,.

m Exercise 2.1 Construct a multiplication table (The Cayley Table) for the six permutations given in
(2.2) and verify that the set of six permutations form a group.

m  Exercise 2.2 Inspect your Cayley table and see what subsets of the elements satisfy the four group
axioms and thus form a subgroup of Sg.



2.2 Cycle Structure of Permutations

m 2.2 Cycle Structure of Permutations

It is useful to express permutations as a cycle structure. A cycle (7, j, k,...,[) is interpreted asi — 7,7 — k
and finally [ — 7. Thus our six permutations have the cycle structures
(1)(2)(3),(1,2)(3), (1)(2,3), (1,3)(2), (1,3,2),(1,2,3) (2.3)

The elements within a cycle can be cyclically permuted and the order of the cycles is irrelevant. Thus
(123)(45) = (54)(312).

m A k-cycle or cycle of length k contains k elements. It is useful to organise cycles into types or classes.
We shall designate the cycle type of a permutation 7 by

(1migme . pme) (2.4)

where my, is the number of cycles of length k in the cycle representation of the permutation 7.
m For S, there are five cycle types

(1%), (1% 21),(2%), (1" 37), (4) (2.5)
Normally exponents of unity are omitted and Eq.(2.5) written as
(1%), (1%2), (2%), (13), (4) (2.6)
m Cycle types may be equally well labelled by ordered partitions of the integer n
A= (A1A2... ) (2.6)

where the \; are weakly decreasing and

> hi=n (2.7)

The partition is said to be of length £ and of weight wy = n. In terms of partitions the cycle types for
S5 are

(1°),(21%), (2°1), (32), (312), (41), (5) (2.8)
m 2.3 Conjugacy Classes of S,
In any group G the elements g and h are conjugates if

g=khk™'  forsome keG (2.9)

The set of all elements conjugate to a given g is called the conjugacy class of g which we denote as K.

m Exercises

2.3 Show that for S; there are five conjugacy classes that may be labelled by the five partitions of
the integer 4.

2.4 Show that the permutations, expressed in cycles, with cycles of length one suppressed, divide
among the conjugacy classes as

(1"
(21%)
(2)
(31)

e

12), (13), (14), (23), (24), (34)
) (

(
(12)(34), (13)(24), (14)(23)
(123), (124), (132), (134), (142)
(

(

(
143), (234), (243)
(4) D(1234), (1243), (1342), (1432) (2.10)

U u Uy

In general two permutations are in the same conjugacy class if, and only if, they are of the same
cycle type. The number of classes of S,, is equal the number of partitions of the integer n.



2.2 Cycle Structure of Permutations

If A= (1™2™2 ... np™n) then the number of permutations ky in the class (A) of S, is

n!

= 1mimq12m2my! . . nMam,,! (2.11)
m 2.4 The Cayley Table for S3

e (12) (13) (23) (132) (123)
e e (12) (13) (23) (132) (123)
(12) (12) e (132)  (123) (13) (23)
(13) (13) (123) e (132) (23 (12)
(23) (23) (132)  (123) e (12) (13)
(132) | (132)  (23) (12) (13) (123) e
(123) | (123)  (13) (23) (12) e (132)

m 2.5 Transpositions and cycles of S,
1. A cycle of order two is termed a transposition.
2. A transposition (i, i + 1) is termed an adjacent transposition.

3. The entire symmetric group S, can be generated (or given a presentation in terms of the set of
adjacent transpositions

(12),(23), ..., (n—1n) (2.12)
m If 1 = 775... 7k, where the 7; are transpositions then the sign of 7 is defined to be
sgn(m) = (—1)* (2.13)

If the number of cycles of even order is even then the permutation is even or positive; if it is odd
then the permutation is odd or negative.

m 2.6 The Presentation of S,
Let us designate an adjacent transposition by

si=(@,i+1) for i=1,2,...,n—1 (2.14)

then we can give a presentation of the symmetric group S, in terms of the s; via the following three
relations:-

s2=1 for i=1,2,....,n—1 (2.15a)
8iSi4+18i = Si+1S5iSi+1 for i= 1, 2, cee,n = 2 (215b)
8i8j = $;S; for |i—j|>2 (2.15¢)

Every permutation 7 in S, can be expressed as a reduced word of minimal length £(7) in the s;.

m Exercise

2.5 Verify the last sentence in the case of S3

m 2.7 Note on Hecke algebra H,,(q) of type A,_1
We can ¢—deform the presentation of S, to give the complex Hecke algebra H,(¢), with ¢ an arbitrary

but fixed complex parameter, generated by ¢; with i = 1,2,...,n — 1 subject to the relations:
Z=(q—1)gi+q for i=12...,n—1 (2.16a)
9i9i+19i = Yi+19iGi+1 for i=1,2,...,n—2 (2.16b)
9i9; = 959 for [|i—j|>2 (2.16¢)

For ¢ = 1 these relations are exactly those appropriate to the symmetric group S,,. There exists a map h
from S, to Hy(q) such that h(s;) = g; and h(w) = g, i, - - - gi,,, for any permutation © = s;, 84, ... S;,, €

m



2.2 Cycle Structure of Permutations

8. The set of reduced words h(r) for all n! permutations 7 € S,, forms a basis of H,,(g). For more details
see:- R. C. King and B. G. Wybourne, J. Phys. A: Math. Gen. 23 L1193 (1990).

m 2.8 The Alternating Group A,

The set of even permutations form a subgroup of S,, known as the alternating group A, and has precisely
half the elements of S, i.e. (3)nl.

m Exercises

2.6 Show that the set of six matrices

ol [5 A
i (3.17)

with the usual rule of matrix multiplication form a group isomorphic to Ss.

2.7 Show that the symmetric group S,, has two one-dimensional representations, a symmetric repre-
sentation where every element is mapped onto
unity and an antisymmetric representation where the elements are mapped onto the sign defined
in Eq. (2.13).
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For every complex question there is a simple answer
_ and it’s wrong,.

_H. L. Mencken

3.1 Semistandard numbering and Young tableaux

Many different prescriptions can be given for injecting numbers into the boxes of a frame.

The standard numbering is intimately associated with the symmetric group S,,.

Another important numbering prescription is that of semistandard numbering where now numbers
, 2, ..., d are injected into the boxes of a frame F* such that:

— H H H N

i. Numbers are non-decreasing across a row going from left to right.
ii. Numbers are positively increasing in columns from top to bottom.
m The first condition permits repetitions of integers.

Using the numbers 1, 2, 3 in the frame F?! we obtain the 8 tableaux

1] [l [a]2]
2] 3] 2]
112] [1[3] [1]3] [2]2] [2]3]
B R B BT 3 3.1)
Had we chosen d = 2 we would have obtained just two tableaux while d = 4 yields twenty tableaux. In
general, for a frame F* a semistandard numbering using the integers 1, 2, ..., d leads to
GA
A d
— Zd 3.2
b= (32
where H) is the product of the hook lengths h;; of the frame and
Gi= [[ (a+i-j) (3.3)
(,4)EX

Thus for d = 5 and X\ = (421) we have H(451) = 144 and Gé“ 1 = 100800 from which we deduce that

£zt — 700
which is the dimension of the irreducible representation {421} of the general linear group GL(5).

m In general, f is the dimension of the irreducible representation {\} of GL(d). Since the representations
of GL(d) labelled by partitions A remain irreducible under restriction to the unitary group U(d) Eq.(3.3)
is valid for computing the dimensions of the irreducible representations of the unitary group U(d).

m The same rules for a semistandard numbering may be applied to the skew frames F*#. Thus for
F542/21 g allowed semistandard numbering using just the integers 1 and 2 would be

1]1]1]
1[2]2
[1]2

m Note that our semistandard numbering yields what in the mathematical literature are commonly
referred to as semistandard Young tableaux. Other numberings are possible and have been developed for
all the classical Lie algebras.



m  Exercises
3.1 Draw the frames F2°/1, [43°1/421° anq [321/21,

3.2 Usezthe irzltegers 1, 2, 3 to construct the complete set of semistandard tableaux for the frame
F437°1/421% and show that the same number of
tableaux arise for the frame F?2!.

3.3 Make a similar semistandard numbering for the frame F321/21 and show that the same number
of semistandard tableaux arise in the set of frames
3
F34+2F2 + FV.

m 3.2 Young tableaux and monomials

A numbered frame may be associated with a unique monomial by replacing each integer i by a variable
x;. Thus the Young tableau

1[1]2]4]5]
313[3]5
4167
5|7|8
6|8
d
can be associated with the monomial
22 xo 3 1F 23 22 a3 22
m 3.3 Monomial symmetric functions
Consider a set of variables (z) = z1, z2,...,24. A symmetric monomial

| ma@) =%, 27|

(3.4)
involves a sum over all distinct permutations a of (A) = (A1, Aa,...). Thus if () = (z1, 22, x3) then
moy(x) = 2% 2o + 2% 23 + 21 T3 + 11 T2 + T3 23
mis(x) = 21 T2 T3
The semistandard numbering of (A\) = (21) with 1, 2, 3 corresponds to the sum of monomials
|m21(:10) + 2mys(x) |
(3.5)

The same linear combination occurs for any number of variables with d > 3.

The monomials my(z) are symmetric functions. If A = n then m(x) is homogeneous of degree n. Unless
otherwise stated we shall henceforth assume that = involves an infinite number of variables z;.
The ring of symmetric functions A = A(x) is the vector space spanned by all the my(z). This space can
be decomposed as

A =®p>0A" (3.6)
where A™ is the space spanned by all m) of degree n. Thus the {m|\ F n} form a basis for the space
A™ which is of dimension p(n) where p(n) is the number of partitions of n. It is of interest to ask if other
bases can be constructed for the space A™.
m 3.4 The classical symmetric functions
Three other classical bases are well-known - some since the time of Newton.

1. The elementary symmetric functions

The n—th elementary symmetric function e,, is the sum over all products of n distinct variables
x;, with eg = 1 and generally

€n = Min = Z Tiy Tiy +-- Ti, (3.7)

i1 <iz...<ip



The generating function for the e, is

E(t) =) ent" = [[(1+a:t) (3.8)

K3

The complete symmetric functions
The n—th complete or homogeneous symmetric function h,, is the sum of all monomials of total

degree n in the variables x1, xo, ..., with hg = 1 and generally
hy, = Z my = Z Tiy Tiy - T, (3.9)
[\=n i1 <ig...<in

The generating function for the h,, is

H(t) =Y hnt" = [[(1—zit)™* (3.10)

n>0 i>1

The power sum symmetric function
The n—th power sum symmetric function is

Pn=mn =Y af (3.11)

i>1

The generating function for the p, is

Pt)=Y put"t=> "> apn!

n>1 i>1 n>1
i>1 1-— int
d 1
=> —log (3.12)
i>1 dt 1-— .Tit
and hence
d -1
P(t) = ElogH(l — x;t)
i>1
d
= —log H(t
5y log H (1)
= H (t)/H(t) (3.13)
Similarly,
d /
P(-t) = pr log E(t) = E (t)/E(t) (3.14)
Equation (3.13) leads to the relationship
nhy =Y prhn_, (3.15)
r=1

It follows from (3.13) that
H(t) = exp Y pat/m
n>1
= H exp(pn t"/n)

n>1

= H Z (pn t™)™ /0 my, (3.15)

n>1 my=0



and hence
H(t) = 2 'path
A

where

Z\N = Hlm’mll
Z_j T

where m; = m;(\) is the number of parts of A equal to i.
Defining
ey = (=)A=

we can show in an exactly similar manner to that of Eq.(3.16) that

E(t) = exzy 'path
A

It then follows from Eqgs.(3.16) and (3.19) that

hn = Z Z}Tlp)\
[A|=n
and

-1
€n = E EXZ)\ P

[IA|=n

Exercises
3.4 Show that for n =3

3 3 3
p3=x]+x5 t+x3+...
€3 =T12ox3 +T1To2Xg +ToT3Lg+ ...

3 3 2 2
hs=a]+a5+...+axizeo+T125+...+ 212223+ 212224+ ...

3.5 Noting Egs. (3.8) and (3.10) and that H(t)E(—t) = 1, show that

n

> (1)hppep =0

r=0
forn>1.
3.6 Use Eq.(3.15) to show that
en = det(hi—it;)1<ij<n
and hence

hy, = det(e1—itj)1<ij<n

3.7 Use Eq.(3.15) to obtain the determinantal expressions

er 1 0 ... 0
2e9 el 1 ... 0
nen, €en—1 €Enpn—2 N A
p1 1 0 ... 0
P2 P1 2 ... 0
nlen =| R
Pn—-1 DPn-2 . .o n—1
Pn Pn-1 - ... 4!

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)



h1 1 0 ... 0
2ho h1 1 ... 0
()" e =1 . : L (3.28)

nhn hn,1 hn,Q N hl
D1 -1 0 cee 0
P2 P1 -2 ... 0

nlhy =| : S

Pn—1 DPn—2 . .. —nm+1

Pn Pn-1 . ce b1

(3.29)

m 3.5 Multiplicative bases for A™

The three types of symmetric functions, h,, e,, p,, do not have enough elements to form a basis for A™,
there must be one function for every partition A F n. To that end in each case we form multiplicative
functions f) so that for each A Fn

= I (3.30)

where f = e, h, orp Thus, for example,
eo1 =€s-e1=(r1 T+ 2123 +2223+...)(r1 +22+23+...)

m 3.6 The Schur functions
The symmetric functions

m)\? 6)\7 h)\a p)\ (331)

where A F n each form a basis for A™. A very important fifth basis is realised in terms of the Schur
functions, sy, or for brevity, S—functions which may be variously defined. Combinatorially they may be

defined as
sxa(z) = Z zT (3.32)
T

where the summation is over all semistandard
A—tableaux T'. For example, consider the S—functions sy in just three variables (x1, x2, x3). For A = (21)
we have the eight tableaux T found earlier

111 [afa] [af2] [af2] [af3] [af3] [2[2] [2]3]
2 3 2 3 2 3 3 3 (3.33)

Each tableaux T' corresponds to a monomial 27 to give

2 2 2 2
s21(z1, T2, T3) =27 T2 + T7 ° + 2 x5+ x1 X223 + 1 T2 T3 + T1 X3
2 2
+ x5 73 + 22 73 (3.34)

We note that the monomials in Eq.(3.34) can be expressed in terms of just two symmetric monomials in
the three variables (z1, z2, x3) to give

s21(21, T2, T3) = m21(21, T2, T3) + 2mys(T1, T2, T3) (3.35)
In an arbitrary number of variables
s21(x) =ma1(x) + 2mqs(x) (3.36)

This is an example of the general result that the
S—function may be expressed as a linear combination of symmetric monomials as indeed would be
expected if the S—functions are a basis of A™. In fact

sx(z) = Z Ky,my, (3.37)



where |A| = n and Ky = 1. The K, are the elements of an upper triangular matrix K known as

the Kostka matrix. K is an example of a transition matriz that relates one symmetric function basis to
another.

m 3.7 Calculation of the elements of the Kostka matrix

The elements K, of the Kostka matrix may be readily calculated by the following algorithm :
i. Draw the frame .
ii. Form all possible semistandard tableaux that arise in numbering F'* with p; ones, iy twos etc.

iii. K, is the number of semistandard tableaux so formed.

Thus calculating K (42) (22 12) we obtain the four semistandard tableaux

1[1]272] [1f1l2[3] [af1]2l4] [1]1[314]
34 2 203 212

=~ |—

and hence K (42) (22 12) = 4.

m Exercises
3.8 Construct the Kostka matrix for A, u - 4.

3.9 Show that in the variables (1, x2, x3) the evaluation of the determinantal ratio

|
3 23 1
rd 23 1
22 r 1
a:% To 1
3 w3 1

yields the monomial content of the S—function so; in three variables as found in Eq.(3.36). N.B.
The above exercise is tedious by hand but trivial using MAPLE.

The last exercise is an example of the classical definition, as opposed to the equivalent combina-
torial definition given in Eq.(3.32), given first by Jacobi, namely,

Ax\+5

Sx = sa(z1, X2, ..., xn) = (3.38)
as
where A is a partition of length < n and
d=Mm—-1,n-2,...,1,0) with
axt+s = det('xjj+n7])1§i,j§n (3.39)
and '
as = H (i —xj) = det(x] ) (3.40)

1<i,5<n
is the Vandermonde determinant. Note that the Vandermonde determinant is an alternating or antisym-

metric function. Any even power of the Vandermonde determinant is an symmetric function. This has
important applications in the interpretation of the quantum Hall effect.

m 3.8 Non-standard S—functions

The S—functions are symmetric functions indexed by ordered partitions A. We shall frequently write
S—functions sy(z) as {A}(z) or, since we will generally consider the number of variables to be unre-
stricted, just {A\}. As a matter of notation the partitions will normally be written without spacing or
commas separating the parts where A; < 9. A space will be left after any part A; > 10. Thus we write
{12,11,9,8,3,2,1} = {12 11 98321} While we have defined the S—function in terms of ordered par-
titions we sometimes encounter S—functions that are not in the standard form and must convert such
non-standard S—functions into standard S—functions. Inspection of the determinantal

forms of the S—function leads to the establishment of the following modification rules :

(M A2y =M} =0 (3.41)



{A, o A ity e =—{ A, i — L+ L )

{)\} =0 if /\i+1 =\ +1 (343)

Repeated application of the above three rules will reduce any non-standard S—function to either zero or
to a signed standard S—function. In the process of using the above rules trailing zero parts are omitted

B Exercise
3.10 Show that

{24} = —{3%}, {141} = —{321}
{14 — 25 — 14} = —{3%2}
{3042} =0, {3043} = {3%2}

m 3.9 Skew S—functions

The combinatorial definition given for S—functions in Eq.(3.32) is equally valid for skew tableaux and can
hence be used to define skew S—functions s, (x) or {\/u}. Since the s/, () are symmetric functions
they must be expressible in terms of S—functions s, (x) such that

Sx/u = Z c;\WsV (3.44)

It may be shown that the coefficients c;),, are necessarily non-negative integers and symmetric with respect

to p and v. The coefficients cﬁy are commonly referred to as Littlewood-Richardson coefficients.

m 3.10 Slinkies and Modification Rules

In situations involving extensive use of modification rules and in particular when one is trying
to derive general formulae the use of slinkies can be very useful (KWY:King, Wybourne and Yang, J.
Phys. A: Math. Gen. 22, 4519 (1989)). (see also Chen, Garsia and Remmel, Contemp. Math. 34, 109
(1984)). A slinky of length ¢ is a diagram of ¢ circles joined by ¢ — 1 links. A slinky can be folded so
as to take the shape of a continuous boundary strip of a regular Young diagram, with each of the links
eithehorizontal or vertical and its circles forming part of the boundary of such a diagram. The sign of
the slinky is defined to be (—1)"~! where r is the number of rows occupied by the circles of the slinky,
so that r — 1 is the number of vertical links of the slinky.

The modification rules for non-standard S—functions can be implemented in terms of folding
operations of the slinkies that make up the Young diagram as follows:

1. Draw the slinky diagram corresponding to the non-standard S—function {A1, A2,..., Ap}.

2. Successively, for i = 1,2,...,p, while holding the starting positions of the slinkies fixed, fold
(if necessary) the i—th slinky of length \; into the shape of the unique standard continuous
boundary strip such that the first 7 rows of the resulting diagram constitute a regular Young
diagram. If this is not possible then {A} = 0. Otherwise we obtain, after folding the last slinky,
the regular Young diagram corresponding to some standard S—function {u}. The final result is
then {\} = (—1)"{u} where v is the total number of vertical links in the diagram.



We illustrate the application of the method of slinkies with two examples.

e O O O O O O O

. O

{4004} = {4211}
O O O O O O O O O O O
. O O O
® O O O O
O O O O—— E
O O g
y O
O O O O O O O
. {60531070} = . {64333210}

The principal application of the slinky method is to the expansion of symmetric generating
functions as a sum of S—functions. Thus, for example, one (KWY) can show that

[T +z—2®)= > (-1 fra{217}
7 q,7=0

where f,41 is the (r + 1)—th Fibonacci number.

m Exercises
3.11 Show that

{24} = —{3%}, {141} = —{321}, {3042} =0, {3043} =+{3%2}, {14-25-14} = —{3°2}

3.12 Extend the slinky algorithm to include the possibility of negative parts and then show that
{14 — 25 — 14} = —{332}.



3.13 Use the method of slinkies to show that
{60531070} = {643321} and {61131090} =0

m  General Remarks concerning S—functions

The S—functions are symmetric functions and form an integral basis for the ring of symmetric
functions and hence may be expressed in terms of the classical symmetric functions ey, hx, mx, fi.
Transition matrices can be defined for taking one from members of one basis to another. The transition
matrices can be expressed in terms of the Kostka matrix K, and the transposition matrix

1, ifA =
J — ’ 3 59
Aw { 0. otherwise (59)

The relevant transition matrices are tabulated in Macdonald (p56). These matrices all involve integers
only.

The elementary and homogeneous symmetric functions e,, and h,, are special cases of S—functions
, namely,

en = {1} hp = {n} (3.45)

S—functions arise in many situations. In the next few lectures we shall explore some of their
properties that are relevant to applications in physics an chemistry. To proceed to these we must first
consider the Littlewood-Richardson rule and then discuss the role of S—functions in the character theory
of the symmetric group S(n) and the unitary group U(n).
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"Fred!’ cried Mr Swiveller, tapping his nose, 'a word to the wise is sufficient for them - we may
be good and happy without riches, Fred.’
Charles Dickens Old Curiosity Shop (1841).
m 4.1 The Littlewood-Richardson rule
The product of two S—functions can be written as a sum of S—functions, viz.

Sp.Sy = Zcﬁys)\ (4.1)

A
The Littlewood-Richardson coefficients ¢, in Egs. (3.44) for skew S—function and (4.1) are identical,
though the summations are of course different. In both cases |u| + |v| = |A|. A rule for evaluating

the coeflicients cﬁl, was given by Littlewood and Richardson in 1934 and has played a major role in all
subsequent developments. The rule may be stated in various ways. We shall state it first in terms of
semistandard tableaux and then also give the rule for evaluating the product given in Eq.(4.1) which is
commonly referred to as the outer multiplication of S—functions. In each statement the concepts of a
row-word and of a lattice permutation is used.

m 4.2 Definition 1 A word
Let T be a tableau. From T we derive a row-word or sequence w(T) by reading the symbols in
T from right to left (i.e. as in Arabic or Hebrew) in successive rows starting at the top row and
proceeding to the bottom row
Thus for the tableau

212]3]

O | (DO [

o[ ]ro]—

we have the word w(T) = 322113322446578 and for the skew tableau

1]1]1]

[1]2

we have the word w(T) = 11122121.
m 4.3 Definition 2 A lattice permutation
A word w = ajas...an in the symbols 1,2,...,n is said to be a lattice permutation if for
1<r<Nand1l <i<n-—1, the number of occurrences of the symbol i in ajas...a, is not less
than the number of occurrences of i + 1.
Thus the word w(T') = 322113322446578 is clearly not a lattice permutation whereas the word
w(T) = 11122121 is a lattice permutation. The word w(T") = 12122111 is not a lattice permutation since
the sub-word 12122 has more twos than ones.
m Theorem 1 The value of the coefficient cﬁy is equal to the number of semistandard tableaux T of shape
FME and content v such that w(T) is a lattice permutation.
By content v we mean that each tableau T' contains v; ones, v5 twos, etc.



m Example

Let us evaluate the coefficient cggﬁ{m}. We first draw the frame F{542/21}

Into this frame we must inject the content of {431} i.e. 4 ones, 3 twos and 1 three in such a way that we
have a lattice permutation. We find two such numberings

1]1]1] 1]1]1]
112]2 2122
[2]3 [1]3
and hence c}iéﬁ (21} = 2. Note that in the evaluation we had a choice, we could have, and indeed more

Eﬁh?ﬂ}' In that case we would have drawn the frame F{542/431} o get

Note that in this case the three boxes are disjoint. This skew frame is to be numbered with two ones and
one 2 leading to the two tableaux
1] 1]

verifying the previous result. Theorem 1 gives a direct method for evaluating the Littlewood-Richardson

coefficients. These coefficients can be used to evaluate both skews and products. It is sometimes useful
to state a procedure for directly evaluating products.

simply, evaluated c

B Theorem 2 to evaluate the S—function product {u}.{v}

1. Draw the frame F*" and place vy ones in the first row, vy twos in the second row etc until the
frame is filled with integers.

2. Draw the frame FY and inject positive integers to form a semistandard tableau such that the
word formed by reading from right to left starting at the top row of the first frame and moving
downwards along successive rows to the bottom row and then continuing through the second frame
s a lattice permutation.

3. Repeat the above process until no further words can be constructed.

4. Each word corresponds to an S—function {\} where A1 is the number of ones, Ao the number of
twos etc.

As an example consider the S—function product {21} -{21}.
Step 1 gives the tableau

1]1]

Steps 2 and 3 lead to the eight numbered frames

111] [afa] [af2] [al2] [1]3] [1]3] [2]3] [2]3]
12] 13 ] 12] 13] 2 4 3 4

Step 4 then lead to the eight words

112112 112113 112212 112213
112312 112314 112323 112324

from which we conclude that

{21}.{21} = {42} + {417} + {3%} + 2{321} + {31°} + {2°} + {2%1%}



I have made only one mon-mathematical discovery in my life, the discovery of the exclusion
principle; and that was what I was given the Nobel prize for! (Wolfgang Pauli, 1956)

Dear Professor,

I must have a serious word with you today. Are you acquainted with a certain Mr. Schrédinger,
who in the year 1922 (Zeits. fur Phys.,12) described a ’bemerkenswerte Eigenschaft der Quan-
tebahnen’? Are you acquainted with this man? What! You affirm that you know him very well,
that you were even present when he did this work and that you were his accomplice in it? That
18 absolutely unheard of. ......

With hearty greetings, I am

Yours very faithfully

Fritz London

m 4.4 Relationship to the unitary group

We have explored various symmetric functions indexed by partitions and defined on sets of
variables. The variables can admit many interpretations. In some instances we may choose a set of
variables 1,q,q2,...,q" (cf. Farmer, King and Wybourne, J. Phys. A: Math. Gen. 21, 3979 (1988).) or
we could even use a set of matrices. The link between S—functions and the character theory of groups
is such that, if X is a partition with £(\) < N and the eigenvalues of a group element, g, of the unitary
group Uy are given by z; = exp(i¢;) for j =1,2,..., N then the S—function

{)\} = {)\1)\2 PN >\N} = s)\(x)
= sx(exp(id1) exp(idy) ... exp(idn)) (4.2)
is nothing other than the character of g in the irreducible representation of Uy conventionally designated
by {A}.
The Littlewood-Richardson rule gives the resolution of the Kronecker product {u} x {v} of Ux

<= > il 00 (4.3)

IM=lpl+]v]

as

{A}

where the c {2} (v} are the usual Littlewood-Richardson coefficients. Equation (4.3) must be modified for
partitions A involving more than N parts. Here the modification rule is very simple. We simply discard
all partitions involving more than N parts. We shall return to the unitary groups later.

4.5 Reduced notation for the symmetric group

The irreps of the symmetric group S(N) are uniquely labelled by the partitions A - N,
there being as many irreps of S(N) as there are partitions of N. Consider the following
Kronecker products in S(N)

{21} o {21} = {3} + {21} + {1%}
{31} o {31} = {4} + {31} + {2°} + {21%}
{41} o {41} = {5} + {41} + {32} + {317}
It is apparent that the result stabilises at V =4 and in general we could write
{N—=1,1} o {N — 1,1} = {N,0} + {N — 1,1} + {N — 2,2} + {N — 2,1%} (4.4)

The above result would hold for all N provided we apply the modification rules to any
non-standard S—functions. Thus

{21} o {21} = {3} + {21} + {12} + {17}
= {3} + {21} + {1%}
since {12} = —{12} = 0.
Equation (4.4) could be rewritten as

(1) 0 (1) = (0) + (1) + (2) + (1) (4.5)



The above equation is an example of the use of reduced notation (cf. Scharf, Thibon
and Wybourne, J. Phys. A: Math. Gen. 26, 7461 (1993) (STW), Butler and King, J. Math.
Phys. 14, 1176 (1973)(BK) and references therein.) which makes use of the fact that the
symmetric group is a subgroup of the general linear group GI(N). In the reduced notation
the irrep label {A\} = {\1,\2,..., Ay} in S(N) is replaced by (\) = (Az,...,\,). Given any irrep
() in reduced notation it can be converted back into a standard irrep of S(N) by prefixing
it with a part N — |u|. For example, an irrep (21) in reduced notation corresponds in 5(6)
t0 {321} or {921} in S(12). If N — |u| > p; then the irrep {N — |u|, u} is assuredly a standard
irrep of S(IN). However, if N — |u|(u1 then the resulting irrep {N — |u|, u} is non-standard and
must be converted into standard form.

m 4.5 Reduced Kronecker products for S(N)
BK have, following Littlewood, given the reduced Kronecker product as

N oy = > (A - Hud/{aHy)) - ({8Y o () (4.6)

a,B,y

where the - signifies ordinary Littlewood-Richardson multiplication of the relevant S—function.
m 4.6 Exercises
4.1 Show that (21) o (31) evaluates as

(6) + (52) + (51%) + 4(51) + 3(5) + (43)

+ 2(421) + 6(42) + (413) + 6(412) + 10(41) + 5(4)

+ (3%1) + 3(32) + (322) + (3212) + 8(321) + 11(32)
+ 4(313) + 12(31?) + 13(31) + 5(3) + 2(23) + 3(2%12)
+ 9(221) + 8(2%) + (21%) + 6(213) + 11(212%) + 9(21)
+ 3(2) + (15) + 3(1%) + 4(13) + 3(1%) + (1)
4.2 Use the above result to deduce that for S(5) {221} o {221} evaluates as

{5} + {41} + {32} + {31%} + {2°1} + {213}
4.3 Show that in S(8) {521} o0 {431} evaluates as

{71} + 3{62} + 3{61%} + 4{53} + 9{521} + 4{513}
+ 2{4?} + 9{431} + 7{42%} + 10{421?} + 3{41%} + 5{3%2}
+ 6{3%1%} + 7{3221} + 5{3213} + {315} + {24} + 2{2%12}
+ {221}

m 4.7 Kronecker products for two-row partitions

In quantum chemistry the Pauli exclusion principle restricts interest to irreps of
S(N) indexed by partitions into at most two parts. In terms of reduced notation two-row
shapes become one-row shapes via the equivalence

{N —k,k} o {N — 4,0} = (k) o (£) (4.7)
From Eq. (4.7) we are led directly to

min(k,l p

(k) o (€) = ({k—=p}-{l—p}-{p—a})

= KN (4.8)

The possible shapes for A\ are severely constrained. The number of rows cannot exceed
three. The multiplicity to be associated with a given shape )\ can be readily determined by
drawing the shape and then filling the cells, in accordance with the Littlewood-Richardson
rule, with say k — p circles o, / — p stars o and p — ¢ diamonds ¢, where

k+l—p4+qg=X+Xo,... (49)



Repeated cells will be marked with dots - . Consider the shape characterised by the one-row
(m), the only case relevant to quantum chemistry. A typical filling is shown below:

lolo[-I-T-Tololo[-[-]-Tolofo]-[-]-]o]

From which we can deduced that CéZ?(Z) is the number of partitions of £+ /¢ —m into two parts

(p,q) with p > ¢q and ¢ > p leading to

1

CEZ?(@) = 5(6 —k4+m+2) for k>m (4.9a)
1

c%% = 5(/{ +l—m+2) for m>k (4.9b)

and the coefficient symmetry

(m) _ (2k—m)
Cliniey = Sty (4.10)
EXerClSeS
Show that

(4) 0 (6) =(10) + (9) + 2(8) + 2(7) + 3(6) + 2(5)
+2(4) + (3) + (2)

and hence for S(12)
{84} 0 {67} = {10 2} + {84} + {6%}

Check that the above result is dimensionally correct.
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To do research you don’t have to know everything
All you have to know is one thing that is not known
—Art Schawlow Nobel Laureate

m 5.1 S—function series

Infinite series of S—functions play an important role in determining branching rules and furthermore lead

to concise symbolic methods well adapted to computer implementation. Consider the infinite series

L:ﬁ(l—xi)
=1
:1—Z$1+Z{E1{E2—...

where the summations are over all distinct terms. e.g.

E T1Xo = X1X2 +T1X3 + ...+ Xox3 + Toxg + ...

(5.1)

(5.2)

Recalling the definition of elementary symmetric funvctions we see that Eq.(5.2) is simply a signed sum

over an infinite set of elementary symmetric functions e, with
Ep = Min = Sin = {1”}
and hence Eq.(5.2) may be written as an infinite sum of S—functions such that

L=1-{1}+{1?} - {13} +...
=3 (ymamy
m=0
We may define a further infinite series of S—functions by taking the inverse of Eq.(5.2) to get
M=TJa-2)""
i=1
=1+{1}+{2}+...

= {m}

Clearly
LM =1

a result that is by no means obvious by simply looking at the product of the two series.

(5.3)

(5.5)

(5.6)

In practice large numbers of infinite series and their associated generating functions may be constructed.



We list a few of them below:

A=T. ()"l Bon,ld)
C=3,(-1)""{}  D=3,{s)
E= Ze(_l)(weJrr)/Q{e} F— ZC{C}
G =N ()W e H =5 (1) {¢)
L=3%,(=)m{1m} M=% {m}
P=Y,0mmp  Q=5,.0"}
(5.7)
where (a) and (7) are mutually conjugate partitions, which in the Frobenius notation take the
form
(c) = (alajt 1 aﬁ 1o a,ajr 1) (5.84)
and
(a1 +1 ax+1 ... a +1
) = < ay a ... a > (5.8b)

(0) is a partition into even parts only and (3) is conjugate to (§). (¢) is any partition and (e) is any
self-conjugate partition. r is the Frobenius rank of (a), (v) and (¢).

These series occur in mutually inverse pairs:
AB=CD=FEF=GH =LM =PQ ={0}=1 (5.9)
Furthermore,
LA=PC=E MB=QD=F
MC=AQ=G LD=PB=H (5.10)

We also note the series
R:{o}—zz<—1)“+b+1 (Z) S:{0}+2Z<Z) (5.11)
a,b a,b

where we have again used the Frobenius notation, and

V=3 (-DYer w=) (-1)Hw}
X=){a} Y= {w} (5.12)

where (w) is a partition of an even number into at most two parts, the second of which is ¢, and @ is the
conjugate of w. We have the further relations

RS=VW ={0}=1 (5.13)
and
PM=AD=W LQ=BC=V
MQ=FG=S LP=HE=R (5.14)

® 5.2 Symbolic manipulation

The above relations lead to a method of describing many of the properties of groups via symbolic manip-
ulation of infinite series of S—functions. Thus if {\} is an S—function then we may symbolically write,
for example,

{(A/M} = {\/m} (5.15)
We can construct quite remarkable identities such as:

BD = {¢}-{¢} (5.16)
¢



or for an arbitrary S—function {e}

BD - {e} => {¢}-{¢/e} (5.17)
¢

Equally remarkably we can find identities such as

{o-7}/Z={0/Z}-{7/Z} for Z=L,M,P,Q,R,S,V,W (5.18a)
{o-7}/Z2=> {0/CZ}-{r/CZ} for Z=B,D,F.H (5.18b)
¢
{o-7}/Z =) (-1)"{0/¢Z} -{r/CZ} for Z=AC E,G (5.18¢)
¢

These various identities can lead to a symbolic method of treating properties of groups particularly
amenable to computer implementation.

m References
For more details see:

1. R C King, Luan Dehuai and B G Wybourne, Symmetrized powers of rotation group representa-
tions J Phys A: Math. Gen.14 2509 (1981)

2. G R E Black, R C King and B G Wybourne, Kronecker products for compact semisimple Lie
groups J Phys A: Math. Gen. 16 1555 (1983)

3. R C King, B G Wybourne and M Yang, Slinkies and the S—function content of certain generating
functions J Phys A: Math. Gen. 22 4519 (1989)

m 5.3 The U, — U,_; branching rule

As an illustration of the preceding remarks we apply the properties of S—functions to the determination
of the U, — U,—; branching rules. The vector irrep {1} of U, can be taken as decomposing under
U, —U,_1 as

{1} = {1} + {0} (5.19)
that is into a vector {1} and scalar {0} of U, _1. In general, the spaces corresponding to tensors for which
a particular number of indices, say m, take on the value n, define invariant subspaces. Such indices must
be mutually symmetrised. The irreducible representations specified by the quotient {\/m} are those
corresponding to tensors obtained by contracting the indices of the tensor corresponding to {A} with an
m—th rank symmetric tensor. Thus we may symbolically write the general branching rule as simply

{A} = {\/M} (5.20)
Thus for example under Us — Us we have
{21} — {21/M}
— {21/0} + {21/1} + {21/2}
— {21} + {2} + {11} + {1} (5.21)

m 5.4 The Gel’'fand states and the betweenness condition

The so-called Gel'fand states play an important role in the Unitary Group Approach (UGA) to many-
electron theory. This comes about from considering the canonical chain of groups

U,DoU,_1D...U3D>U; (522)

The states of such a chain follow directly from consideration of Eq.(5.20). Each state may be represented
by a triangular array having n rows. There are n entries m;, with ¢ = 1,2,...,n corresponding to the
usual partition (\) padded out with zeroes to fill the row if need be. The second row contains n — 1
entries m; ,—1 placed below the first row so that the entry m; ,_1 occurs between the entries my , and
ma,, etc. Each successive row contains one less entry with the bottom row containing just one entry
ma1,1. The number of such states is just the dimension of the irrep {A} of U,.



Consider the irrep of Us labelled as {21}. We find the eight Gel’fand states

2 1 0 2 1 0
2 1 2 1
2 1
2 1 0 2 1 0
2 0 2 0
2 1
2 0 2 1 0
2 0 1 1
0 1
2 0 2 1 0
1 0 1 0
1 0

m 5.5 The Murnaghan-Nakayama rule for S(NN) characters

It is not my intention to give anymore than hints at methods of calculating the characters of S(N) a
subject well covered in the books of James and Kerber, Littlewood, Murnaghan, Macdonald, Robinson
and Sagan but rather to indicate those specialisations that are of immediate application in quantum
chemistry. The Murnaghan-Nakayama rule is of particular value in starting practical calculations. The
key concept is that of the removal of rim hooks or continuous boundary strips from a Young frame. A rim
hook is a continuous strip of cells along the boundary of the Young frame which when removed leaves a
standard Young frame. The length of the strip is the total number of cells in the rim hook. We associate
a sign with a given rim hook. If the rim hook involves v cells in the vertical direction then the sign of
the rim hook is

sgn = (—1)71 (5.23)

As an example consider the Young frame associated with the partition (543321)

Let us now mark the three permissible continuous boundary hooks of length 6 as below

In each case the 6-hook involves four rows and hence the number of vertical cells is v = 4 and hence the
sign is sgn = —1.
m The Murnaghan-Nakayama Algorithm The characteristic XEPA)} for S(N), where {\} is the irrep and
(p) the class may be determined by

1. Draw the Young frame for the partition A.

2. Set i =1. Set sgn = +1.

3. While p; <> 0 do begin

4. Remove a rim hook of length p; in all possible ways that leave a standard Young frame. If this

is not possible for any of the Young frames then XE{;\)} = 0 and the algorithm is terminated.

5. A sign sgn = sgn * newsign is to be associated with each new Young frame created in 3. with
newsign being the sign of the rim hook being removed.



6. Seti=1i+1
7. End
8. The characteristic X&{:)} is equal to the sum of the signed units at the termination of the loop.
NB. The result is independent of the order of the removal of the rim hooks.
54332
Example of Xi{864) I

First remove a rim hook of length 8 from the Young frame as shown below

In each case the sign of the 8 —hook is positive.
Now remove the 6—hook from each of the above two frames to give

olo] ole]
[ ]

o |00 O

o (0|C (O (0
o (o0 (O
[

oo oo

Again each 6—hook has a positive sign. Now remove a 4—hook from each frame to give

olo] - T-Tele]

o |00 O
[ ]

L o Lol i)
o (o0 (O
[ ]

olofoleo]-

The sign of each 6—hook is negative and hence each of the frames yields an overall negative sign and

hence
{43321} _ o
(864)

m 5.6 The characteristics X({])\\/})

The characteristics ng]; constitute an important special case. By the Murnaghan-Nakayama rule there

is just a single rim-hook of length N to be removed. The only possibility for a non-zero characteristic is
if the frame of the partition ) is a single hook of the form (a1®) with N = a + b. The characteristic is
thus either null or £1. Precisely

X { 0 otherwise (5:24)

m 5.7 The power sum symmetric functions and S(N) characters

The character table of S(IV) is the transition matrix M (p,s) that expresses power sum symmetric func-
tions p, as a linear combination of S—functions sy with |p| = |\| = N. Thus

Pp = ZXI)J\S)\ (5.25)
A
We have the important special case
n—1
Pn = Z <_1)bsa+1,1b (5.26)
a,b=0



Recalling that the power sum symmetric functions are multiplicative we can use Eq. (5.26) to
compute all the characteristics associated with a given class by simple application of the Littlewood-
Richardson rule. As an example consider the characteristics for the class (31) of S(4). From Eq. (5.26)
we have

ps = {3} — {21} + {1°}
p1 = {1}

and hence

pa = ({3} = {21} + {1°}) - ({1})
= {4} - {2} + (1%}

showing immediately that the only non-zero characteristics associated with the class (31) are
4 22 14
Xz = +1, Xz = —1, X31 = +1

Exercises

1. Generalize the power sum symmetric function to

n—1

palgt) = D (=1)9g"sqs1,10(2) (27)
atbiie

and show that

par(@:x) = ¢*{4} + (¢° = 1){31} — ¢{2°} — (¢ — 1){21%} + {17}

and for ¢ = 1 the S(4) result is recovered. This takes one into Hecke algebras. ([KW1]King and
Wybourne, J. Phys. A: Math. Gen. 23, L1193(1990); [KW2]J. Math, Phys. 33, 4 (1992).).

2. Construct a g—dependent character table for N = 3 and compare it with the corresponding table
for S(3). See [KW1].

?It did, Mr Widdershins, until quantum mechanics came along. Now everything’s atoms. Reality
18 a fuzzy business, Mr Widdershins. I see with my eyes, which are a collection of whirling
atoms, through the light, which is a collection of whirling atoms. What do I see? I see you
Mr Widdershins, who are also a collection of whirling atoms. And in all this intermingling of
atoms who is to know where anything starts and anything stops. It’s an atomic soup we’re in,
Mr Widdershins. And all these quantum limbo states only collapse into one concrete reality when
there is a human observer”

Pauline Melville, The Girl with the Celestial Limb (1991)
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This is why I value that little phrase ”I don’t know” so highly. It’s small, but it flies on mighty wings. It expands
our lives to include the spaces within us as well as those outer expanses in which our tiny Earth hangs suspended. If Isaac
Newton had never said to himself ”I don’t know,” the apples in his little orchard might have dropped to the ground like
hailstones and at best he would have stooped to pick them up and gobble them with gusto. Had my compatriot Marie
Sklodowska-Curie never said to herself ”I don’t know”, she probably would have wound up teaching chemistry at some
private high school for young ladies from good families, and would have ended her days performing this otherwise perfectly
respectable job. But she kept on saying ”I don’t know,” and these words led her, not just once but twice, to Stockholm,
where restless, questing spirits are occasionally rewarded with the Nobel Prize.

WISLAWA SZYMBORSKA ( Nobel Lecture 1996)

m 6.1 Plethysm of S—functions

The plethysm of S—functions is a property that has many important applications in symmetry
aspects of many-body problems in physics and grew out of the mathematical theory of invariants though
nowadays forms an integral part of combinatorial mathematics. There is a close connection between the
plethysm of S—functions and branching rules.

Let A™ = A™(xy,...,zy) denote the space of homogeneous symmetric polynomials of degree
n.Then given symmetric polynomials with integer coefficients

PeA” and QeA™

then
P[Q] is a symmetric polynomial in AT (6.1)

In this sense a plethysm can be seen as a substitution process. As a simple example consider the power

sum symmetric functions
— n _ m
Pn = E x; and Pm = E x;
i i

then
Pulpm] = pmlpn] = Pmn (6.2)
Likewise
Pnlem] = emlpn] = my' (6.3)
and
Pn [mu] = mu[Pn] =Mpn (6.4)

where p - n signifies that each part of p is multiplied by the integer n.

The above examples are all commutative which is not the general case. In general the S—function
content of sy[s,] is not the same as that of s,[s:].

As an example of S—function plethysm consider the evaluation of sa[sq2](21, ..., z4). We express
s12(x1,...,24) as a sum of monomials,
$12(X1,. .., X4) = X1T2 + X173 + X124 + Tox3 + Toxg + T3T4 (6.5)

Now regard s as a function in as many monomials as in (6.5) i.e.
salsi2](x1, ..., x4) = so(@1202, X123, T124, X223, T2Tg, T3T4) (6.6)

Very tediously, the right-hand-side of (6.6) may be expanded as a sum of monomials which in turn may
be expressed in terms of S—functions to yield, finally

so[s12](X) = S92(x) + s4(%) (6.7)
Noting that

s9(21,...,04) = T3 + 25 + 22 4+ 22 + 11200 + 2173 + T124 + ToTz + Toxy + T374 (6.8)



We have

s12[s2](x1, ..., x4) = S12 (a:% + a:% + a:% + a:i + x1x2 + 123 + X124 + T2T3 + Tokg + T3T4) (6.9)

which may be expanded as a sum of monomials and then into S—functions to give
s12[s2](x) = s31(x) (6.10)
which is different from (6.7).

While the above examples have involved just four variables the results actually hold for any
number of variables n > 4.

m Exercise
1. Show that si2[s12](X) = 8212 (%)
m 6.2 Plethysm Notation

The plethysm of S—functions was introduced by D E Littlewood in terms of invariant matrices
and who used the notation {A} ® {u}. This notation is used almost universally by physicists whereas the
corresponding plethysm viewed as an S—function substitution is almost universally written by combina-
torists as s,[sx] the corrspondence between the two notations being

{At @ {u} = sulsi (6.11)

It much that follows we shall use the physicists notation.

m 6.3 The algebra of plethysms
The algebra of plethysms is governed by the rules

AR (B+C)=A®@B+A®C (6.12a)

A® (BC)=(A®B)(A®C) (6.12b)

A®(BeC)=(A®@B)aC (6.12¢)

(A+B)®{u} = (Ao {n/H(Be{¢}) (6.12d)
¢

(A-B)®{u} =) (-1)* (A {mu/¢})(B{(}) (6.12€)
¢

(AB)@{u} =Y (A@{p)(B&{uop}) (6.12f)

Note that (6.12c) shows the associativity of the plethysm operation and that in (6.12f) the o signifies an
inner product of S—functions so that {u} o {p} is the Kronecker product of irreducible representations of
Sp, labelled p and p which are both partitions of m. In (6.12e) w, is the weight of the partition (¢) and
the partition (¢) is conjugate to ().

m 6.4 Plethysm and S—function series

Later we shall show that plethysm gives a powerful tool for developing symbolic representations
of branching rules for going from the representation of a group G to those of a subgroup H. However, we
must first consider plethysm and S—function series. The basic ideas are developed in

1. M Yang and B G Wybourne, New S—function series and non-compact Lie groups J Phys
A:Math.Gen. 19 3513 (1986)

2. R C King, B G Wybourne and M Yang, Slinkies and the S— function content of certain generating
functions J Phys A:Math.Gen. 22 4519 (1989)

Consider the infinite S—function series

L(z) = 1‘[(1 — ;) (6.130)

= > (-nm{1m} (6.13b)



The inverse L~ ! is
[e’e) -1 [e%s)
L™= (H(l - an—)) = [[{m}=M (6.14)
i=1 m=0

Let us define the adjoint series LT as the conjugate () inverse or the inverse conjugate of L:

LT =) '=L" (6.15)
leading to
L =TJa+a)=> (1" =@ (6.16)

Note that taking the adjoint (}) is equivalent to the substitution
Ty — —X; (617)

in L(x;), which can be viewed as a plethysm:

LT =L(—z) = (-{1)®L (6.18)

The conjugate of L is also the inverse of LT and hence

L=h?= <H(1 —I—xi)) =[[-v)™{m} =P (6.19)

i=1 m=0

We thus have four infinite S—function series L, M, P, @ related by the four properties, identity (I),
conjugation (), inverse (—1) and adjoint (1) which form a discrete four-element group with the Cayley
table

I - ~1 T

I - ~1 t
- I t ~1
—1 -1 t I -
T -1 ) I

Having obtained the four L type series we can obtain further series by simple substitution into
the L series. Thus under the substitution

we obtain
L(l‘il‘j) = H <1 - l‘il‘j) <6'21a)
(i<3)
= {12} ® L (6.21b)
=> (-1)"{a}=A (6.21¢c)

where in the Frobenius notation

_ a7 (6%} (679
(a)_(al—l—l oas+1 ... a,—l—l) (6.22)

Continuing we could construct four series 4, A~1, A, AT
The substitution
T; — 17 (6.23)



leads to

L(z}) =[]0 - ) (6.24a)

= ({2} -{1*YheL (6.24b)
= > (-DM{p+2qp}=V (6.24c¢)
p,q=0

m 6.5 Why are infinite S—function series important?

We noted earlier that S—functions can be related to the characters of the unitary groups U(n)
and the S—function multiplication via the Littlewood-Richardson rule corresponds to the resolution
of Kronecker products of irreducible representations in U(n). We also noted that a given irreducible
representation of U(n), say {A} becomes reducible under the group-subgroup restriction U(n) — U(n—1)
such that

{A} = {\/M} (6.25)

where M is the infinite S—function series

M= {m} (6.26)

The number of terms is rendered finite by the occurrence of the M series as a S—function skew. The
irreducible representations of U(n) are all finite dimensional so the occurrence of the S—function series
as skews is to be expected. However, there are, so-called non-compact groups whose non-trivial unitary
representations are infinite-dimensional. In those cases the characters may be represented in terms
of infinite S—function series and upon restriction to compact subgroups the branching rules involving
an infinite number of representations of the compact subgroup and the S—function series appear in the
numerator rather than as skews. Likewise whereas for compact groups, like U(n), the Kronecker products
involve a finite number of terms for the noncompact groups a Kronecker product of a pair of infinite-
dimensional irreducible representations will usually involve an infinite number of infinite dimensional
unitary irreducible representations. We shall not explore non-compact groups in any detail here. The
interested reader may explore some of the references below.

1. D. J. Rowe, B. G. Wybourne and P. H. Butler, Unitary Representations, Branching Rules and
Matriz Elements for the Non-Compact Symplectic Groups, J Phys A:Math.Gen. 18, 939-953
(1985)

2. R. C. King and B. G. Wybourne, Holomorphic Discrete Series and Harmonic Series Unitary
Irreducible Representations of Non-Compact Lie Groups: Sp(2n,R), U(p,q) and SO*(2n), J
Phys A:Math.Gen. 18, 3113-3139 (1985)

3. B. G. Wybourne, The representation space of the nuclear symplectic Sp(6,R) shell model J Phys
A:Math.Gen. 25, 4389-4398 (1992)

4. K. Grudzinski and B. G. Wybourne, Plethysm for the noncompact group Sp(2n,R) and new
S—function identities J Phys A:Math.Gen. 29, 6631-6641 (1996).

5. Jean-Yves Thibon, Frederic Toumazet and Brian G Wybourne, Products and plethysms for the
fundamental harmonic series representations of U(p, q), J Phys A:Math.Gen. 30, 4851-6 (1997)

6. Jean-Yves Thibon, Frederic Toumazet and Brian G Wybourne, Symmetrised squares and cubes
of the fundamental unirreps of Sp(2n,R), J Phys A:Math.Gen. 31, 1073-86 (1998)

7. R C King and B G Wybourne, Products and symmetrised powers of irreducible representations
of Sp(2n,R) and their associates, 31,6669-6689 (1998)

8. R C King, F. Toumazet and B G Wybourne, Products and symmetrised powers of irreducible
representations of SO*(2n), J Phys A:Math.Gen. 31, 6691-6705 (1998)

9. R CKing and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-
dimensional irreps of Sp(2n,R) Part I: Characters and products , J.Math.Phys. 41, 5002-19
(2000)



10. R C King and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-
dimensional irreps of Sp(2n,R) Part II:Plethysms, J.Math.Phys. 41,5656-90 (2000)

m 6.7 Regular matrix groups

Consider square n X n matrices A such that

1. The unit element is the n X n identity matrix,
1 0

0 1
2. The existence of an inverse element, A~!, is assured by restriction to non-singular matrices such
that
det |A] #£0 (6.28)
3. The laws of matrix multiplication are such that the associative law of multiplication is satisfied.
4. The set of matrices is such that closure is assured.

If the above four properties are satisfied then the set of matrices will form a group. Groups
involving regular matrices may be finite or infinite, be discrete or continuous, and have real () or
complex (C) elements. The variables in the real space R™ will be designated x = (z1,...,2,) and in
the complex space C" as z = (z1,...,2,). A regular matrix of degree n acting in (R") or in C" will
produce transformations x — x’ or z — z’. In problems in physics we are frewquently interested classes
of transformations that leave invariant some functional form of x or z.

m 6.8 Continuous matrix groups

Consider a group whose elements comprise all regular nonsingular real matrices of degree 2,
<a11 (112) (6.29)
a21  G22

arjlagy # a12a21 (6.30)

that follows from (6.28), the range of the elements of the matrix is unrestricted and we can parameterise
the matrix elements a;; as

Apart from the constraint

aij = 0ij + Qi (6.31)

If all o;; = 0 we simply obtain the identity matrix

[= (é (1)) (6.32)

We can treat the a;; as real independent parameters and generate all the elements of the group by a
continuous variation of the a;;. The range of the parameters is unbounded and limited only to the extent
demanded by (6.30). Any element of the group can be designated by giving its associated values of the
parameters ;.

m Exercises
1. Show that the transformations produced by the matrices

cosf sind
(_ sin g COSG) (0 <0< 2m) (6.33)

acting in R? leave invariant the form 2% + 23.
2. Show that the transformations produced by the matrices

cosh@ sinh@
(sinh9 coshG) (6.34)



leave invariant the real quadratic form 2% — 23.

m 6.9 Matrix groups - Examples
The general linear groups GL(n, C) and GL(n,R)

The complex general linear group GL(n, C) is the group of regular invertible complex matrices of
degree n. A particular matrix is characterised by its n? elements with each element containg a real and
an imaginary part. The continuous variation of the 2n? parts (i.e. n? real and n? complex parts) will
generate the entire group and hence the group is of dimension 2n? and may be characterised by 2n? real
parameters.

If the elements of GL(n,C) are restricted to real values only, then
GL(n,C) D GL(n,R) (6.35)

The special linear groups SL(n, C) and SL(n,R)

These groups occur as subgroups of GL(n,C) and GL(n,R) respectively when the requirement
that the determinant of their matrices be of determinant +1. Clearly, SL(n,C) becomes a 2(n? — 1)
parameter group and SL(n,R) a (n? — 1) parameter group and

GL(n,C) > SL(n,C) > SL(n,R) (6.36)

The special linear groups are often referred to as special unimodular groups.

The unitary groups

The unitary matrices A of degree n form the elements of the n?-parameter unitary group U(n)
that leaves invariant the Hermitian form

Zi = 1"2;2] (6.37)

Since the unitarity of the matrices A requires that

Ata=1 (6.38)
the range of matrix elements a;; is restricted by the requirement that
> anaj; =6 (6.39)
t

and hence |a;;|? < 1. In this case the parameter domain is bounded and U(n) is an example of a compact
group.
The special unitary group SU(n)

If we limit our attention to unitary matrices of determinant +1 we obtain the (n? — 1)-parameter
special unitary group SU(n).

The orthogonal groups

The group of complex orthogonal matrices of degree n form a n(n —1)- parameter group O(n, C).
Since ‘AA = I we have |A| = &1 and thus the group decomposes into two disconnected pieces and we
cannot pass continuously from one piece to the other. The orthogonal matrices of determinant 41 form a
subgroup of O(n, C), the n(n — 1)-parameter special complex orthogonal group SO(n,C) whose matrices
leave invariant the complex quadratic form
n
Z 22 (6.40)
i=1

The special real orthogonal groups O(n,R) and SO(n,R)

The set of real orthogonal matrices of degree n forms the n(n — 1)/2- parameter real orthogonal
group O(n, R) while the set of real orthogonal matrices of determinant +1 form the real special orthogonal
group SO(n,R). Again O(n,R) contains two disconnected pieces with SO(n, R) occurring as a subgroup.
The real special orthogonal group holds invariant the real quadratic form

En:xf (6.41)
i=1



The Symplectic groups Sp(n, C) and Sp(n,R)
The symplectic group Sp(n, C) is the 2n(2n + 1)-parameter group of regular complex matrices
which hold invariant the non-degenerate skew-symmetric bilinear form
n
> (@) — 7iy:) (6.42)
i=1
of two vectors x = (z1,...,Zn, 25, ..., 20) andy = (y1,. ., Yn, Y}y - -, Yh). GL(n,C) D Sp(2n,C) and the
matrices need not be unitary. Restriction to real matrices gives the n(2n+ 1)-parameter group Sp(2n, R).
The symplectic group sp(2n) = U(2n) U Sp(2n,C) is known as the wunitary symplectic group.
This group, like Sp(2n,R), is a n(2n + 1) -parameter group. The symplectic groups occur only in even-
dimensional spaces and find applications in many areas of physics.
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And yet the mystery of mysteries is to view machines
making machines; a spectacle that fills the mind with
curious, and even awful, speculation.
Benjamin Disraeli: Coningsby (1844)

m 7.1 Group-subgroup decompositions

NB. Herein we follow closely R C King, Branching rules for classical Lie groups using tensor and
spinor methods, J Phys A:Math.Gen. 8,429 (1975). Branching rules play an important role in applications
of group theory to problems in physics.Consider a group G with elements {g, ...} and irreducible repre-
sentations {\c, ...} and a subgroup H i.e. G D H with elements {, ...} and irreducible representations
{ug, - -} The restriction of the set of matrices {A\(g)} forming the representation (A)g of G to the
set{\q(h)} yields a representation of H which is generally reducible. If

Ag(h) = Zm’;guH(h) forall heH (7.1)
H

then under G | H we have the branching rule

GLH g 1Y mHB (7.2)
*H

where the mig are known as the branching rule multiplicities.

m 7.2 The Unitary,U(n), and Special Unitary, SU(n), groups

We have already noted the relationship between S—functions and the characters of the unitary
group and the fact that the irreducible representations of U(n) may be labelled by ordered partitions
of integers, thus {A\} = {A1,...,\n}. (NB in addition to these covariant irreducible representations
there are irreducible representations involving both covariant and contravariant indices - see the above
reference for more details). In practice zero parts are omitted. Under the restriction U(n) | SU(n) an
irreducible representation {A} of U(n) remains irreducible and hence we may still label the irreducible
representations of SU(n) by ordered partitions with the proviso that irreducible representations of U(n)
involving partitions with n positive integers are equivalent to an irreducible representation of SU(n)
involving fewer than n positive integers. The equivalence is such that

A = {0 = Ay, 0} if Ap >0 (7.3)

Thus for SU(n) the irreducible representations involve at most m — 1 positive integers. Thus under
U(3) | SU(3) we have, for example, the equivalences

{321} = {21}, {432} ={21}, {1*} = {0}

NB. irreducible representations that are inequivalent in U(n) may, under the restriction U(n) | SU(n)
be equivalent to the same SU(n) irreducible representation. Irreducible representations of SU(n) that
involve partitions {A} such that

A A, ={ — A, e — A1, ..., 0} (7.4)

are said to be contragredient to one another and are of the same dimension. Thus in SU(3) we have the
pairs {2}, {22}, {31}, {32} etc. Such pairs are sometimes labelled as {\}, {\}. If {\} = {\} then {)\} is



said to be self-contragredient. Thus in SU(3) {21}, {42} are examples of self-contragredient irreducible
representations.

m 7.3 Kronecker products in U(n) and SU(n)
The Kronecker product of a pair of irreducible representations of U(n), say {A} and {u} may be

resolved into a sum of irreducible representations of U(n) by use of the Littlewood-Richardson rule for
S—functions to give

< {uy =) S,y (7.5)

with the proviso that all {nu} involving more than n non-zero parts are to be discarded. For example,
in U(3) we have upon application of the Littlewood-Richardson rule

{21} x {31} =
{321?} + {322} + {3%1} + {413} + 2{421}
+ {43} + {512} + {52} (7.6)

However, the four part partitions {3212} + {413} must be discarded as null in U(3). NB. for n > 4 holds
as it stands. For the group SU(3) (7.3) must be applied to the three part partitions occurring in (7.6) to
give for SU(3) {21} x {31} =

{1} + {2%} + 2{31} + {4} + {43}
+ {52} (7.7)

m Exercises

1. Verify that the product of the dimensions on the lhs of (7.7) is equal to the sum of the dimensions
on the rhs.

2. Show that in SU(3)
{1} x {1} = {0} + {21}
3. Show that in SU(3)
{1 > {1} > {1} = {0} +2{21} + {3}

m 7.4 The labelling of irreducible representations for the classical Lie groups
Hereon we follow

1. G R E Black, R C King and B G Wybourne, Kronecker products for compact semisimple Lie
groups, J Phys A:Math.Gen. 16, 1555 (1983). (BKW)

The partition (A) of weight wy serves to label an irreducible representation {A} of U(n) and to
specify the symmetry properties of the corresponding wyth-rank covariant tensor forming a basis for the
irreducible representation. This same covariant tensor forms a basis for representations of the subgroups
of U(n), including the orthogonal group, O(n), and if n is even, the symplectic group Sp(n). In general,
these representations are reducible and will be labelled by the partitions [A] and ()\) respectively.

As well as the tensor irreducible representations labelled by [A], O(n) also has double-valued or
sl[ai??r representations denoted by [A; A\] where A is the fundamental spin representation of dimension
2[n/2],

For all linear groups there exists amongst the irreducible representations a one-dimensional ir-
reducible representation, denoted by e, which maps each group element to the value of its determinant.
By definition all the elements of SU(n), SO(n) and Sp(n) have determinant +1, so that the irreducible
representations ¢ coincide with the identity irreducible representations {0}, [0] and (0) respectively. How-
ever, for U(n) and O(n) this is not the case. For U(n) ¢ is the irreducible representation {1} with an
inverse

el=z={1n} (for U(n)) (7.8)

For O(n), all the group elements are of determinant +1 and hence

e =¢ and exe (for O(n)) (7.9)



The product of € with any irreducible representation is also an irreducible representation, and
inequivalent irreps related by some power of ¢ are said to be associated. For U(n) there are an in-
finite number of inequivalent associated irreducible representations associated with a given irreducible
representation, one of which will be specified by a partition into less than n parts. For instance ...
{62521}, {5241}, {423;1}...{541}, {65212} are all associated irreducible representations of U (5).

Since under U(n) | SU(n) ¢ | {0} it follows that all mutually associated irreducible representa-
tions of U(n) give equivalent irreducible representations of SU(n).

In the case of O(n) any given irreducible representation can possess at most one inequivalent
associated irreducible representation. Irreducible representations for which the character is zero for all
group elements of determinant —1 possess an associate that is equivalent to itself. Such irreducible
representations are said to be self-associate. For O(2k) all the spinor irreducible representations and all
the tensor irreducible representations labelled by exactly k parts are self-associate. The remaining tensor
irreducible representations of O(2k) and all irreducible representations, tensor and spinor, of O(2k + 1)
are not self-associate. Associated pairs of irreducible representations are denoted by [A] and [A]* and
[A; A\] and [A; A]* where

A]* =& x [\ and [A; A" =€ x [A; A] (7.10)

Under O(n) | SO(n) the distinction between an irreducible representation and its associate is lost.
However, only those irreducible representations of O(n) which are NOT self-associated remain irreducible
under O(n) | SO(n). Each self-associate irreducible representation of O(2k) yields on restriction to
SO(2k) two inequivalent irreducible representations of the same dimension which we shall label as [A]+
and [A; M+ where in the former case ) is necessarily a partition into k non-zero parts.

Table 7.1 Standard labels for the irreducible representations of the classical groups of rank k.

Group G Label A\ Constraint
U(n) {\} £ <n
SU(TL) {)\} Iy<n-1
02k +1) Al [\ <k

[As AL [A A <k
SO(2k + 1) BY <k

[As ] <k
O(2k) [A], [A]* <k

[A] =k

[A; A] 0O <k
SO(2k) BY I <k

[Al+, [Al- =k

[As AL, [As Al <k
Sp(2k) oy 0 <k

m 7.5 Modification rules

The labels given in Table 7.1 uniquely label the inequivalent irreducible representations of the
classical groups. However in many practical applications non-standard labels may arise. In such cases the
corresponding character may either vanish or be equal to the character of an irreducible representation
specified by a G-standard label or be the negative of such a character.

All the classical groups modification rules can be associated with a common procedure. The key
operation is the removal of a continuous boundary strip of boxes of length i from the Young diagram
specified by the partition (\), starting at the foot of the first column and ending in the ¢c—th column, to
yield symbolically A — h. If the resaulting Young diagram is regular then A — h is simply the partition
which serves to specify the diagram to which we associate a sign factor (—1)¢. If the resulting diagram is
not regular then it is discarded since the character vanishes identically. The procedure is repeated until
the diagram either corresponds to that of a standard label or vanishes.



Table 7.2. Modification rules for the classical groups. (p = £x,q = £,,)

U(n),SU(n) {2\ = (=) Yy —mA—h} h=p+qg—n—1>0
O(2k+1) Al = (=1)*7 1\ — A]* h=2p—2k—-1>0
A]* = (1) L[\ = h] h=2p—2k—-1>0
[A;A] = (=1)°[A; N — h]* h=2p—2k—-2>0
[A;A]* = (—1)°[A; A — A] h=2p—2k—-2>0
SO(2k + 1) A\ = (- 1)c X —h] h=2p—2k—-1>0
[A; A] = (—1)°[A; X — A h=2p—2k—2>0
O(2k) Al = (=)A= ¥ h=2p—2k>0
A]* = (1) L[\ = h] h=2p—2k>0
[A; A= (—1)°[A; X — 7] h=2p—-2k—-1>0
SO(2k) A= (1) A —h] h=2p—2k>0
[A; A= (1) TA; X — 7] h=2p—-2k—-1>0
@A = (1) Yo A — A h=2p—2k—2>0
(A2 = (—1)°[A; A — A+ h=2p—2k—1>0
I =D IOA—hl-F h=2p—2k—-2>0
Sp(2k) Ay =(=1)(\—h) h=2p—2k—-2>0

m Exercises
7.1 Verify for O(6) that
[3211] = [32]*, and [A;3211] = —[A;321]

7.2 Verify for Sp(4) that
(@113 = —(@), and (1 = —(0)

7.3 Verify for SO(8) that
[3221%] = [32%], [32?1%] =0, [32%1%]= —[32]

m 7.6 Note on Mixed tensor irreducible representations of U(n)

So far we have only discussed the covariant tensor irreducible representations of U(n) which herein
will be our principal concern. In addition to the covariant tensor irreducible representations {A} there
are inequivalent irreducible representations associated with m—th rank contravariant tensors specified
by {ii} and more generally irreducible representations associated with mixed tensors specified by {fi; A\}.
The technical details are given in BKW.
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If the reader thinks he is done, now, and that this book

has no moral to it, he is in error. The moral of it is

this: If you are of any account, stay at home and make your

way by faithful diligence; but if you are of “no account”,

go away from home, and then you will have to work, whether

you want to or not. Thus you become a blessing to your friends by
ceasing to be a nuisance to them

Mark Twain Roughing it (1872).

m 8.1 Some basic branching rules

The unitary group, U(n), contains many subgroups of relevance to applications in physics. Time
does not permit detailed derivations, these can be found in references given earlier. Three basic branching
rules can be written symbolically in terms skews of the special infinite series S—functions B, D, M
introduced earlier:-

Un)lUmn-1) {A} L{A/M} (8.1a)
Un) | O(n)  {A} | [A\/D] (8.1b)
U2n) | Sp(2n)  {A} | (A/B) (8.1c)

Recall
M={0}+{1}+{2}+ {3} + {4} + {6} + {6} + {7} + {8} +... (8.2a)
D = {0} + {2} + {22} 4+ {23} + {27} + {4} + {42} + {42%} + {4®} + {6} + {62} + {8} +... (8.2b)

B = {0} 4 {12} + {17} + {16} 4+ {18} 4+ {22} + {2212} + {2214} + {27} + {32} + {3212} + {4*} + ... (8.2¢)

Note that (8.1a-c) hold for all n the distinction comes only in the application of modification rules, if
required. Thus from (8.1a) we obtain for U(n) | U(n — 1) the typical n—independent results

{21} | {21} + {2} + 12} + {1} (8.3a)
{312} | {312} + {31} + {217} + {21} + {13} + {1%} (8.3b)
{42} | {42} + {41} + {4} + {32} + {31} + {3} + {2°} + {21} + {2} (8.3¢)
{322} | {322} + {321} + {32} + {23} + {221} + {2°} (8.3d)

The above results hold without modification if n > 4. Actually, (8.3a) and (8.3c) hold for n > 3. For
n = 2 we would need to discard the S—functions involving two parts appearing on the right-hand-side of
(8.3a) and (8.3¢) while (8.3b) and (8.3d) would be completely null.

The branching rule for SU(n) | SU(n — 1) is the same as in (8.1a) with the proviso that
inequivalent irreducible representations of SU(n) involve at most n — 1 non-zero parts. Thus under
SU(3) | SU(2) we have

{21} | 2{1} + {2} + {0} (8.4a)

which dimensionally corresponds to
8122+3+1 (8.4b)

m 8.2 Examples of U(n) | O(n) branching rules
Use of (8.1b) readily leads to the typical n—independent results:-

{21} | [21] +[1] (8.5a)
{2212} | [221%] + [21%] 4 [17] (8.5b)
{3221} | [3221] + [321] + [31] + [2%] + [2212] + [2%] + [212] + [2] + [17] (8.5¢)



Recall that the tensor irreducible representations of O(2k) and O(2k+1) are labelled by partitions having
at most k non-zero parts. Thus the above results would be valid without modification for k > 4. For
smaller values of k the O(n) modification rules must be applied. Thus for U(6) | O(6) the above results
would modify to

{21} [ 217+ (1] (8.6a)
{217} L[2°]" + 207 + [17] (8.60)
{3271} | [321] + [31] + [2%] + [2°]* + [2%] + [217] + [2] + [17] (8.6¢)
[2211] = [22]*, [32*1] =0, (8.7)
The results for SU(6) | SO(6) can be obtained from (8.6) by noting that under O(2k) | SO(2k) we have
A" =[N (8.8)
and if [\] has k non-zero parts then

N = s + A (3.9)

and hence for SU(6) | SO(6) (8.6) becomes
{21} L 21+ [1] (8.10a)
{2212} | [22] + [212]4 + [21%] + [17] (8.10b)

[

{3221} | [321]4 + [321]— + [31] + [2%]4 + [2°]= + 2[2%] + [21%]4 + [21%]- + [2] + [1*]  (8.10¢)

m 8.3 Examples of U(2n) | Sp(2n) branching rules

The U(2n) | Sp(2n) branching rules follow from (8.1c) and use of the B—series leads to the
typical results:-

{21} | (21) + (1) (8.11a)
{2212} | (221%) + (2%) + (21%) + (1%) + 2(1%) + (0) (8.11b)
{3221} | (3221) + (321) + (31) + (31) + (2%) + (2212) + (22) + 2(21%) + (2) + (1?) (8.11c)

For n > 4 the above results are n—independent. For smaller values of n the modification rules must be
applied to give for SU(6) | Sp(6) the modified results:-

{21} 1 (21) + (1) (8.12a)
{2217} | (2%) +(21%) +2(1%) + (0) (8.12b)
{3221} | (321) + (31) + (2%) + (2%) + 2(21%) + (2) + (1) (8.12¢)

In the above cases the modification rules make the terms that have four non-zero parts null. This is
generally not the case.

m 8.4 A branching rule theorem
Suppose that G D H and that the vector irreducible representation 1¢y branches as

1o 1Y vy (8.13)
with vy not necessarily irreducible, then
gL O vp) @A (8.14)

v

(I gave this result long ago B G Wybourne Symmetry Principles in Atomic Spectroscopy New York -
Wiley-Interscience (1970).) This result is very useful in obtaining new branching rules as we now show.

m 8.5 The U(m +n) | U(m) x U(n) branching rule

In this case the vector irreducible representation {1} of U(m + n) branches as

{1} L {1} +{1}s (8.15)



and from (8.14)

Do T + {0 @ {0 (8.164)
= > ({m @ {A/H x {1 @ {C}) (8.160)

¢
=D N x {¢ha (8.16¢)

¢

where in (8.16b) we have used (6.12d) and in (8.16¢) used the fact that
{1} @ {u} ={u} (8.17)

m 8.6 Example

Consider the irreducible representation {21} of some group-subgroup U(m +n) | U(m) x U(n).
From (8.16¢) we have

{21} 1> {21/Chm x {Chn (8.18)
¢

The sum is over all S—functions {(} that skew {21} i.e. the set
{¢} = {21} + {2} + {1} + {1} + {0} (8.19)
using those in (8.18) leads to the branching rule
{21} | {21} x {0} + {2} x {1} + {12} x {1} + {1} x {2} + {1} x {1?} + {0} x {21} (8.20)

The above results also hold for SU(m +n) | SU(m) x SU(n) with the usual partition provisos. Thus for
SU(7) | SU(4) x SU(3) we can check that (8.20) is dimensionally correct by noting that

112=20x1+10x3+6x3+4x6+4x3+1x8 (8.21)

m 8.7 The U(mn) | U(m) x U(n) branching rule

In this case the vector irreducible representation branches as

{L}mn | {1}m x {1}n (8.22)
and noting (6.12f) and (8.17) we obtain
{Abmn L ({13m x {1}0) @ {A} (8.23a)
=D (U@ {p}) x ({1} ® {Aop}) (8.230)
P
= Z{p}m x {Aoptn (8.23¢)
P
Note the appearance of an inner S—function product {\o p},. If {\} = {1*} then recall that
k [ ApY itw, =k
{1%0p} = {0 if w, £ k (8.24)
where the partition (p)’ is the conjugate of the partition (p) while if {\} = {k} then
[ {p} Hfw,=k
{kop}= {0 if w, # k (8.25)

Thus for the special case where {\} = {k} or {1¥} we have the simplifications of (8.23),
namely,

{k} 1> {ptm x {p}n (8.264)
{173 1) {ptm < {p}n’ (8.260)



where in both cases the summation over p is restricted to partitions (p) of weight k. Equation (8.26a) is
appropriate to k identical bosons and (8.26b) to k identical fermions.

m 8.8 Classification of the states of the dV electron configurations

A d—orbital has spin S = % and orbital angular momentum L = 2. Thus there are 10 spin-
orbital states that can be regarded as forming a basis for the vector irreducible representation {1} of
the special unitary group SU(10). the spin and orbital parts of the wave function will span the direct
product subgroup SU(2) x SU(5) subgroup of SU(10). If we have N electrons in equivalent d—orbitals
(same principal quantum number n) to satisfy the Pauli exclusion principle their wavefunction must be
totally antisymmetric with respect to the spin-orbital quantum numbers. This will be the case if they
span the irreducible representation {1V} of SU(10). Thus to determine the total spin S and orbital L

quantum numbers we need to first use (8.26b) to determine the
SU(10) | SU(2)% x SU(5)F (8.27)

branching rules for the {17} irreducible representation of SU(10). Inequivalent irreducible representa-
tions of SU(2) are labelled by single non-negative integers while irreducible representations of the type
{p, q} are associated with the equivalence

{pa}={p-at »p=2q=0 (8.28)
An irreducible representation {p} of SU(2) will be of dimension
dimension({p}) =p+1 (8.29)
and spin
spin({p}) = 5 = & (8.30)
Thus from (8.26b) we have under SU(10) | SU(2) x SU(5)
1ML )2 Aon,02) x {on, o) (8.31a)
o1 ioa=N
= Y Ao —o} x {27177} (8.31b)
D

where we have made use of the fact that SU(2) limits (o) in (8.26b) to two row partitions and the
conjugate partition must then be a two column partition. Below we give a table of the branching rules
for N =0,1,...,10.
Table 8.1 Branching rules for the {1V} irreducible representations under SU(10) | SU(2) x SU(5)
Dim SU(10) | SU(2) x SU(5)
1 {0} {0} x {0}
10 {1} {1} x {1}
5 {1%} {2} > {12} + {0} x {2}

120 {13} {3} x {13} + {1} x {21}
210 {14} {4} x {14} + {2} x {212} + {0} x {22}
252 {15} {5} x {0} + {3} x {213} + {1} x {221}
210 {15} {4} x {1} + {2} x {2212} + {0} x {23}
120 {17} {3} x {12} + {1} x {231}

45 {1%} {2} x {1°} + {0} x {2%}
10 {19 {1} x {1}
1 {110} {0} x {0} (8.32)

Notice that the partitions labelling the irreducible representations of SU(5) involve at most 4 non-zero
integers. The single integers labelling the irreducible representations of SU(2) are twice the value of the
spin S and all the states belonging to the associated SU(5) irreducible representation have that spin
quantum number. Further, notice that the dimensions of the SU(10) irreducible representations {17V}
and {1V} are equal and that the SU(2) spins are the same with each SU(5) being the contragredient
partner. This is the familiar particle-hole symmetry manifesting itself.



To proceed further we need to branch the SU(5) irreducible representations into those of its
subgroup SO(5) using (8.1b). We note that the branchings for contragredient partners are identical so
that it suffices to consider just those irreducible representations of SU(5) that occur in Table 8.1 for
N <5.

Table 8.2 Branching rules for SU(5) | SO(5).
Dim SU(5) | SO(5)

1 {0} [o]

5 {1} 1

10 (1?7 17

15 {2} [21+10]

10 {13y 1%

40 {21}y [21]+[1]

5 {1y (1]

45 {217 [21] +[17]
50 {22} 24+ [21+ (0]
1 {15} 0]

24 {21°} 2] +[17]

75 {221} [2°]+[21] +[1] (8.33)

Finally, to complete the classification of the states of d"¥ we need the branching rules for SO(5) |
SO(3). These can be found by use of the branching rule theorem of (8.14). Since under SO(5) | SO(3)

(171 [2] (8.34)

we have from (8.14) that
(AL 2] @ [A] (8.35a)
=[(({2} —{0}) @ {»/C})/D] (8.35b)

In going from (8.35a) to (8.35b) we have made use of the possibility of inverting the SU(5) | SO(5)
branching rule by use of the C'—series of S—functions that is the inverse of the D—series. Thus in going
from (8.35a) to (8.35b) we have replaced [2] by {2/C} = {2} — {0} and [\] by {\/C} and then evaluated
the plethysms as for S—functions and then skew the resultant list of S—functions with the D—series and
applied the SO(3) modification rules to reduce everything to a list of single part SO(3) labels and given
them their standard spectroscopic angular momentum labels L where the correspondence is

[0S, [P, 121D, [3]F, [4]G, [5]H, [6]1, [7] K, [8] L, [9] M, [10]N, [11]0, [12]Q, . .. (8.36)

Table 8.3 Some SO(5) | SO(3) branching rules.
Dim SO(5) | SO(3)

1 0] S

5 1] D

10 [13]  P+F

14 ]2 D+G

35 [21] P+D+F+G+H

35 [22] S+ D4+F4+G+I (8.37)

Thus we have all the components to classify the states of the dV electron configurations using
the group-subgroup scheme

SU(10) © SU(2)% x (SU(5) D SO(5) D SO(3)%) (8.38)



Table 8.4 Group classification of the states of the dV electron configurations.

d¥SU(2) x SU(5) SO(5) SO(3) IS,
a” {0} x {0} ] [0] 'S
b {1} x {1} 1 1 °D
? {2} x {17} (1?1 1]+ 3] °PF
{17} x {2} 2] 2]+ [4] 'DG
[0  [0] 'S
{3} x {1°} (1°] 1] +[3] ‘PF
{1} x {21} 21]  [1]+[2]+[3]+[4]+[5] 2PDFGH
1] 2 °D
at {4y x {11} 1 [2] °D
{2} x {21%} 21]  [1]+ 2]+ [3]+[4+[5] 3*PDFGH
1 [2] °D
{0} x {2%} 2°]  [0]+ 2] +[3] + [4] +[6] 'SDFGI
2] 2]+ [4] 1paG
[ [0] 'S
@ {5} x {0} [0 [0] °s
{3} x {21%} 2] [0]+[2] ‘SD
(12 [1]+[3] ApR
{1} x {221} 22]  [0]+[2]+[3] +[4] +[6] Z2SDFGI
21]  []+[2]+ 3]+ 4]+ 5] 2*PDFGH

1 2 ’D (8.39)

Note that every state has a distinct set of labels. This would not be the case if we had simply enumerated
the 25+1L states.

m 8.9 Seniority classification of the states of dV

We could have used several other possible subgroup structures embedded in SU(10) to classify
the states of dV. Let us consider the group-subgroup structure

SU(10) | Sp(10) | SU(2) x (SO(5) | SO(3)) (8.40)
The SU(10) | Sp(10) branching rules follow from (8.1¢) to give the results in Table 8.5.
Table 8.5 Some SU(10) | Sp(10) branching rules.
SU(10) | Sp(10)

{0} (0)

{1} (1)

{17} (1%) +(0)

{1°} (1%) + (1)

{1} (1%) + (12) + (0)

{1°} (1%) + (1%) + (1) (8.41)

The branching rules for Sp(2k) | SU(2) x SO(2k + 1) follow from the branching rule theorem to
give generally

(A LY {NAoa} x[0/D] (8.42)



The evaluation may be readily done in SCHUR either using the branching rule 11 or writing the
simple function

gr spl0

enter rvl

dim[rvi]

gr2su2sob
rule[rvi*0]sklwith a
rule last sum ileq2
rule last sk2with d
supout false

std last

dim last

stop

Running the function gives for example
DP>
fnl
Group is Sp(10)
enter rvl
1111
Dimension = 165
Groups are  SU(2) * S0(5)
{43011 + {2}[21] + {o0}[2"2 ]
Dimension = 165
DP>
Thus we obtain the Sp(10) | SU(2) x SO(5) branching rules given in Table 8.6.
Table 8.6 Some Sp(10) | SU(2) x SO(5) branching rules.

Dim Sp(10) | SU(2) x SO(5)

1 (0 {0} x [0]

10 (1) {1} x [1]

44 (1?) {2} x [1%] + {0} x [2]

110 (1) {3} x 12 + {1} x [21]

165 (14 {4} x [1] + {2} x [21] + {0} x [2%]

132 (1) {5} x [0] + {3} x [2] + {1} x [2%] (8.43)

Combining the results of Tables 8.5 and 8.6 with that of 8.3 gives the classification of the d"V
states shown in Table 8.7.



Table 8.7 The symplectic classification of the states of the d"V electron configurations.

dN SU(10) | Sp(10) | SU(2) x SO(5) | 25F1L
d’ {0} (0) {0} x [0] 'S
d' {1} (1) {1} > [1] °D
PR {17} (12) 21 x 17 SPF
{0} x 2] DG
(0) {0} x [0] 'S
d? {13} (13) {3} x [1?] iPF
{1} x [21] PDFGH
(1) {1} > [1] °D
d* {1} (1) {4} > [1] °D
{2} x [21] SPDFGH
{0} x [22] 1SDFGI
(12) {2} x [17] SPF
{0} x [2] paG
(0) {0} x [0] s
d {1°} (1%) {5} = [0] °D
{3} x 2] DG
{1} x [2%] 2SDFGI
(13) {3} x [1?%] iPF
{1} x [21] PDFGH
(1) {1} x [1] 2D (8.44)

A careful inspection of the above table reveals a striking property, known as seniority.In d?> we note that
the 1S state has the same Sp(10) label as does the corresponding state for d°. It is as if in going from d°
to d? two d—electrons have paired to produce an angular momentum state L = 0. Let the integer v be
the value of N for which the Sp(10) irreducible representation (1) first occurs then &5 is the number
of pairs of d—electrons coupled to zero angular momentum in forming the N —particle state. For example
(12) occurs in d?, d* and those states are assigned seniority v = 2. Seniority is a useful concept in
calculating matrix elements in atomic physics and of much greater usefulness in nuclear shell calculations
where strong pairing interactions occur. In nuclei states of lowest energy have lowest seniority whereas
in atomic shells one has the opposite situation.
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Mathematics requires a small dose, not of genius,
but of imaginative freedom which, in a larger dose,
would be insanity. And if mathematicians tend to
burn out early in their careers, it is probably because
life has forced them to acquire too much common
sense, thereby rendering them too sane to work. But
by then they are sane enough to teach, so a use can
still be found for them.

— Angus K Rodgers

® 9.1 Quantum Dots and Symmetry Physics

The subject of quantum dots involves the confinement of N electrons in two or three dimensions, com-
monly by electrostatic fields, over a nano-metre scale. The confining potential is, to a good approximation
parabolic. The quantum dot behaves as an N —electron atom without a nuclear core. One may add or
subtract a single electron from a quantum dot giving rise to the possibility of nano-metre scale devices
such as transitors etc.

In an atom the kinetic energy tends to dominate over the potential energy (the confinement length is
small) whereas in a quantum dot the two contributions are roughly of the same order making normal
perturbative methods difficult. A closely analogous problem is that of nucleons confined in a harmonic
oscillator potential with quantised motion occuring about the centre of mass of the N—nucleon system.
We shall first review some of the properties of the isotropic harmonic oscillator, the unitary group U(3)
and the special unitary group SU(3).

m 9.2 The Isotropic harmonic oscillator

The Hamiltonian H of a normalised isotropic harmonic oscillator (i.e. with m = h = w = 1) in three-
dimensions may be written as

H= %(p2 +1?) (9.1)

From Heisenberg’s quantisation postulate the coordinates ¢; and momenta p; satisfy the commutation
relations

9> q5] = [pispi] =0, @i, pj] = idi; (9.2)

Now introduce boson annihilation and creation operators (a and a! respectively)

1 1
a=—(r+1ip), al = —(r—: 9.3
\/5( p) \/5( p) (9.3)
which satisfy the bosonic commutation relation
la;, al] = b (9.4)
The Hamiltonian can now be written as 5
H:aT-a—i—a (9.5)
Use of Eqn. (9.4) then leads to
[H.aj]=a),  [H.a)=~q (9.6)

Thus we deduce that a]; creates and a; annihilates a quantum in the j direction. We recognise al-aas
being the number operator with eigenvalues of

n=mni+ng+ns (9.7)

and hence the energy eigenvalues of H are

3
En:n—l—§ (n=0,1,2,...) (9.8)



with normalised state vectors
almi

|ninang) = H \/_|0()0 (9.9)

with |000) being the vacuum state with

a;|000) =0 (9.10)
Noting that a’ = a* we have

3 ny
a:
(ningns| = (000| 1;[1 \/;7 (9.11)
with
(000]al =0 (9.12)
m 9.3 Degeneracy Group of the Isotropic Harmonic Oscillator
Let us introduce nine operators
1 .
Ty = 5{6@,%} (4, =1,2,3) (9.13)
where {a,b} = ab + ba. Using the basic boson commutation relations of Eqn. (9.4) we find
[Tijv TTS] = dirTis - 5isT7‘j (9.14)

Thus the nine operators T;; close under commutation and generate a Lie algebra. Putting H; = T}; (do
not confuse this with the Hamiltonian) we find the three H; form a self-commuting set and

[Hi, Tjr] = (035 — 0ir) T (9.15)
all the roots are of the form e; — e; where the e are mutually orthogonal unit vectors.

The set of nine operators T;; may be identified as the generators of the unitary group in three dimensions,
U(3). The Hamiltonian H is related to the H; of Eqn. (9.15) via

H=H+ Hy+ H; (9.16)
commutes with all T;j;. The three operators
H
H =H, — 3 (9.17)

taken with the T;; (i # j) can be taken as the generators of the special unitary group SU(3) if we
remember that since Y . H = 0 the H] are not linearly independent. For reasons that will become
apparent shortly we refer to U(3) as the degeneracy group of the isotropic harmonic oscillator.

m 9.4 Labelling Representations and Weights

In the case of the angular momentum group SO(3) we label the angular momentum states as |JM) where
M is the eigenvalue of J, with .J being the highest weight of M. This idea carries over to Lie groups in
general. We recall that in the case of SO(3) we can write the defining commutation relations as

[J.,J1] = £L4 [Jy,J-] = J. (9.17)
with 1
Jr = ——(Jp £iJy) (9.18)
V(2)
For a general semisimple Lie algebra of rank ¢ we have ¢ operators ,H; (i = 1,...,¢), that commute
among themselves. The Lie algebra can be cast into the standard Cartan-Weyl form as
[Hi, H;] = (i,jzl,...é)
[H;, Ea] =
[Eaa Eﬂ] aBEa+ﬂ
[Eo,E_o] = o'H; (9.19)

where the F, are the analogues of the ladder operators J+ of SOs.



Just as in SO3 we distinguish the components of a representation by the eigenvalues of J, for a Lie group
we may label the components of a representation by the eigenvalues of the ¢ self-commuting operators
H;. For any compact Lie algebra the highest weight vector is unique and hence can be used to specify
the representation. Consider for example, the group U(3) which has three self-commuting operators H;.
Suppose we wish to determine the representation of U(3) whose components are the annihilation a and
creation operators af, we have

[Hi aT] = 6ija; and [Hi,aj] = —6ijaj <920)

’ 7

Thus the components of al give rise to the set of weight vectors (100), (010), (001). The highest weight
vector is (100) and hence we can label the representation as {100} of U(3). Likewise, the components of
a give rise to the weight vectors (—100), (0 — 10), (00 — 1). We say that a weight vector w is higher than a
weight vector w’ if the first component of their difference w — w'’ is positive. Thus the highest weight for
a is (00 — 1) and the representation of U(3) spanned by the components of @ may be labelled as {00 — 1}
which is contragredient to {100}.

m  FExercises
9.1 Noting Eqn(9.14) show that the nine operators T;; are associated with the nine weight vectors
(000), (000), (000), (1-10), (10-1), (01-1), (-110), (-101), (0-11).
9.2 Determine the highest weight vector in the above set of weight vectors.
9.3 Repeat the above analysis for a two-dimensional isotropic harmonic oscillator and show that the
relevant symmetry group is U(2).
m 9.5 Rotational Symmetry and the Isotropic Harmonic Oscillator
The harmonic oscillator Hamiltonian, Eqn. (9.1), commutes with all the components of the angular

momentum operator
L=rxp=iaxal (9.21)

and hence H is rotationally invariant. The components of L form under commutation the Lie algebra
associated with the group SO(3). Noting the definition of the operators T;;, Eqn.(9.13), and Eqn. (9.21)
we have

L1 = —i(ng — T32), LQ = —i(Tgl — Tlg), L3 = —i(Tlg — TQl) (922)

We may choose L3 as the generator of the group SO(2) and hence for the three-dimensional isotropic
harmonic oscillator we have the group structure

U(3) D SU(3) D SO(3) D SO(2) (9.23)
It is convenient to label the oscillator states in a basis |ném) where n =0,1,2,.... We have
n=2x+/¢ with z=0,1,2,... (9.23)

and hence the values of ¢ associated with a given value of n are

{=1,3,5,...,n n odd

=0,2,4,...,n n even (9.24)
and thus for a given n there is a set of %—fold degenerate states |nfm). This is precisely the

dimension of the symmetric representation of U(3) designated by the partition {n,0,0} and hence the
statement that the group U(3) is the degeneracy group of the three-dimensional isotropic harmonic oscil-
lator.

n=>5 p, f,h
n=4 s,d, g
n=3 P, f
n=2 s,d
n=1 P
n=20 ]

The first six levels of the isotropic harmonic oscillator



In the preceding we have developed the theory for a single particle in a harmonic oscillator potential.
This particle could equally well be a nucleon as in nuclear physics or an electron in a quantum dot. The
degeneracies are exactly the same as is the form of the energy spectrum. To proceed further requires we
develop a many-particle model for particles interacting in a harmonic oscillator potential. To that end
we may seek to develop a dynamical group.
Two combinatorial observations
These notes are supplementary to Symmetric Functions 9 and concern
1. Some additional remarks on boson-fermion symmetry.

2. An observation relating to the Littlewood-Richardson Rule.
1. Boson-Fermion symmetry for a one-dimensional harmonic oscillator

The n— dimensional isotropic harmonic oscillator has the metaplectic group Mp(2n) as its dy-
namical group with U(n) as the degeneracy group. The complete set of states span the infinite dimensional
unitary irreducible representation A of Mp(2n). Under Mp(2n) — U(n) one has the branching rule

A—M (1)
where

M=) {m} (2)

Consider N non-interacting particles in an n—dimensional harmonic oscillator potential. In general
these particles will form states belonging to symmetrised powers (or plethysms) according to the various
partitions of the integer N i.e. with respect to the group U(n) terms coming from the plethysm

M @ {\} (3)

Now consider the special case of n = 1 with either N bosons or fermions. The degeneracy group
is now just U(1) and we can readily evaluate Eq.(3) for the totally symmetric and totally antisymmetric
cases as plethysms. At the U(1) level we have for the M —series

M@ {N} =" gn{k} (4)
k
where g%, is the number of partitions of k into at most N parts with repetitions and null parts allowed
and
Mo {1V} =3 {6} (5)
¢

where cfv is the number of partitions of £ into NV distinct parts, including the null part.
If ¢ = k+ (N? — N)/2 then we have the identity

v = gn (6)
For example,
M@ {4} {0} + {1} +2{2} + 3{3} + 5{4} + 6{5} + 9{6} + 11{7} + 15{8} + 18{9} (7)
M @ {1} D{6} + {7} + 2{8} + 3{9} + 5{10} + 6{11} + 9{12} + 11{13} + 15{14} + 18{15}  (8)
cN = 9N

For g} and c}® we have the respective sets of 11 partitions

9i{2°1} + {3217} + {32°} + {3%1} + {41°} + {421} + {43} + {51°} + {52} + {61} + {7}

;2 {5431} + {6421} + {643} + {652} + {7321} + {742} + {751} + {832} + {841} + {931} + {1021}
The identity, Eq.(6), comes about by realising that one can map from one of the sets of partitions to the
other by adding or subtracting py = (N —1,...,2,1,0). Adding p to the partitions of k into at most N

parts, converts them into partitions, all of whose parts are distinct. Hence ¢! = ¢gFifl = k + %N (N -1).
Thus in the example above add (3,2, 1,0) to the g list gives that of c}>.

The consequence of the boson-fermion equivalence is that the thermodynamic properties of
N —non-interacting bosons or fermions are essentially equivalent apart from a shift in the groundstate.



2. Littlewood-Richardson coefficients
Kirillov has noted that if cf;y =1 then

C%Q,NV =1 <1)

His observation can be conjectured to generalise to
N+k-1 )
N A
CN;,L,NV = < k—1 ) Zf Cy,l/ =k (2)

where in both cases N multiplies all the parts of the attached partition. e.g.

{321} - {431} >

4{24 20 84} +4{2416 124}  + 4{24 16 842} +4{2016 128}  + 4{20 16 12 4%}
+ 4{20 16 824} (3)
and
{1284} - {16124}
35{24 20 84} +35{24 16 124}  + 35{24 16 84%} 4 35{20 16 128}  + 35{20 16 12 4%}
+ 35{20 16 824} (4)

This looks encouraging BUT there exist counterexamples! One counter example is worth billions of
examples!
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Oh, he seems like an okay person, except for being
a little strange in some ways. All day he sits at
his desk and scribbles, scribé/les. scm’bb;és. Then at
the end of the day, he takes the sheets of paper he’s
scribbled on, scrunges them all up, and throws them
in the trash can

— J von Neumann’s housekeeper

m 10.1 A Hamiltonian for Quantum Dots

Experimentally the electrons of a quantum dot are contained in a parabolic potential and hence we
expect a close relationship with a many-electron system subject to a harmonic oscillator potential. The
interaction potential V (r;,7;) between particles ¢ and j moving in a two-dimensional confining potential
in the x — y plane is taken to saturate at small particle separations and to decrease quadratically with
increasing separation. In free space we would expect the interaction between two electrons to vary
as |r; — rj|7!. In a quantum dot the form of V(r;,7;) is modified by the presence of image charges.
The wavefunctions of the electrons confined in the quantum dots have a small but finite extent in the
z—direction perpendicular to the x —y plane. This results in a smearing of the electron charges along the
z—direction. As a result the interparticle repulsion tends to saturate at small distances. This suggests
choosing the interaction as

1 ... .
V(ri,r;) =2Vo — §m Qz|ri - 1"j|2 (10.1)
where m* is the electron effective mass and V and 2 are positive parameters.

Consider an N —electron quantum dot each with a charge —e, a g—factor g*, spatial coordinates r; and
spin components s ; along the z—axis. Suppose there is a magnetic field B along the z—axis. The spatial
part of the Hamiltonian can be written as

1 eA1? 1, .
Hopace = %zl: [pi + Tl] + ™M wézi: ril* + ZV(HJ'J’) (10.2)

i<j
and the spin part as
Hspin = _g*,UBBZ Sz,i (103)

where the momentum and vector potential associated with the ¢ — th electron are given by

Di = (Pa,isPy,i) A = (Asi, Ayi) (10.4)

and pp is the Bohr magneton.

The eigenstates of H will involve the product of the spatial and spin eigenstates obtained from Hgpatiar
and H,pin. The total spin projection Sz = >~, s.; will be a good quantum number. Choosing a circular
gauge A; = B(—y;/2,;/2,0) Eqn. (10.2) becomes

1 s 1 1 w
Hoppoo = —— pr + Zm*wi(B) Z Ir4l? + Z [QVO —5m Q2|m,7~j|2] + 7 ZL (10.5)
7 i 1<J 7
where wi(B) = w + w?/4 and w. = eB/m*c.
m 10.2 Note on Commutators and Second-quantisation

In much that follows we will need to be able to manipulate bosonic annihilation (a;) and creation operators
(a;‘). The basic bosonic commutation relations are

lai,a;] =0, [al,al]=0, [a;,al]=0;; (10.6)

1777



These can be used to simplify expressions. As an example, consider the anticommutator {a:f,aj} =
.'.

alaj + ajal and let us evaluate the commutator [{a},a;},az]. Expanding out we have

[azaj + ajal,ak] = [azaj,ak] + [aja;f,ak] (10.7)
Expanding out the first commutator we have
[a;[aj,ak] = a:-rajak — aka:faj (10.8)

To simplify this commutator we want to try to rearrange the first term on the right-hand-side to cancel
the second term. Using the first commutator in Eqno. (10.6) we can rearrange the first term as

a}ajak — a}akaj (10.9)
and hence the right-hand-side of Eqn. (10.9) becomes

T T T T
;a0 — QkQ; G5 — Q;QkA5 — Ak, A;

= [azv a’k]a’j
_[ak’ a:]a]'

= —0ika;

m Exercise
Show that if
T = %{al’aj}
then
[Tij, Trs] = 0j.rTis — 0isTr;

m 10.3 The Degeneracy Group for Mesoscopic Systems

In this lecture we enlarge the concept of a degeneracy group to a dynamical group. The degeneracy
group for the isotropic harmonic oscillator was found to be SU(3). Each irreducible representation {n00}
is spanned by a set of w eigenstates of the Hamiltonian and associated with the same energy
eigenvalue E,, of the harmonic oscillator. There is one weight vector for every eigenstate. The algebra of
the degeneracy group contains a set of operators that allow us to start from any eigenstate and ladder
through the entire set of degenerate eigenstates associated with a given degenerate eigenvalue. Thus the
angular momentum ladder operators L4 take us from one |aLM) eigenstate to another |aLM =+ 1) but
leaving L fixed. The operators L., L+ that generate the angular momentum group SO3 but cannot take
us from states belonging to one irreducible representation of SO3 to another. To do that we must use the
operators contained in the degeneracy algebra that lie outside of those of the angular momentum algebra.
In addition the algebra of the degeneracy group contains operators that allow us to ladder between states
of a given SU(3) multiplet changing both L and M quantum numbers but not n. These additional
operators reflect the fact that the isotropic harmonic oscillator has, like the H—atom, symmetry higher
that just rotational symmetry.

m 10.4 A Dynamical Group

We seek a dynamical group that contains the degeneracy group as a subgroup and has the energy eigen-
states belonging to a single irreducible representation. Such a group contains among its generators
operators that allow one to ladder between different irreducible representations of the degeneracy group.
The degeneracy group contains an infinite set of finite dimensional unitary irreducible representations and
hence the dynamical group must necessarily be a non-compact group with infinite dimensional unitary
irreducible representations . We now construct the dynamical group for mesoscopic quantum systems.

m 10.5 The Dynamical Group for Mesoscopic Quantum Systems

1. Assume the Hamiltonian of the N —particle system is a function of coordinate and momentum
operators of the individual particles.



2. Designate the coordinates of the r—th particle by z,; with »r = 1,..., N and the momentum by
pr with i =1,...,d.

3. The associated operators X,; and P,; obey the usual Heisenberg commutation relations (We
choose units such that i = 1)

[Xm'a ij] = O: [Xria st] = i(srsfsijy [Pm'y st] =0 (1010)
4. The (2Nd)? bilinear operators
{XTiija Xristy Priij7 Prist} (1011)

close under commutation. However, only
(2Nd + 1)Nd of these operators are independent since

Priij = ijPri - iérséi]‘ (1012)
5. Consider the (2Nd + 1) Nd independent operators
1 1
Qrisj = §{X’r‘i7ij}7 Vrisj = §{Xri7st}7
1
Krisj = §{P'I”i7 st} (1013)

They close under commutation on the non-
compact Lie algebra Sp(2Nd, R) which we can take as the dynamical algebra of our mesoscopic
N — electron system.

m 10.6 Subalgebras of the Dynamical Algebra

1. We can construct subalgebras of Sp(2Nd, R by forming subsets of the defining generators that
close under commutation. Thus, for example, the V’s close under commutation forming the
elements of the GL(Nd, R) algebra.

2. Contracting on particle or spatial indices can yield further Lie subalgebras. Thus the two sets of
operators (summing on repeated indices)

Qij = Xpi X5, Ly =X0Pj— X, 5P,

Kij = PPy
1
Ti; = §(Xriprj + X, Pri + PriXyj + Prj Xri) (10.14)

and
Qrs = XriXsia Lys = Xy iPy; — XsiPri7
Krs = Pripsi
1
Trs = §(Xripsi + Xsipri + PriXsi + Psini) (1015)

close under commutation and separately generate the Lie algebras Sp(2d, R) and Sp(2N, R).

3. The above two algebras do not commute but the subsets {L;;} and {L,;} do separately close
under commutation with

[Lij, Lyt) = i(Lirdjs — Lbjx + Ljxds + Ljxbs — Ljidir)
[Lrss Liu] = i(Lrt0su — Lyudst + LstOru — Lsu0rt) (10.16)
and form the generators of the subalgebras O(d) and O(N).
4. Continuing we are led to the following possible Lie subalgebras of Sp(2Nd, R):-
Sp(2,R) x O(Nd) D Sp(2,R) x O(N) x O(d)

DU(1) x O(N) x O(d) (10.17)
Sp(2N,R) x O(d) DU(N) x O(d) D U(1) x O(N) x O(d) (10.18)
Sp(2d) x O(N) D U(d) x O(N) D U(1) x O(d) x O(N) (10.19)



U(Nd) DU(N) xU(d) DU(1) x O(N) x O(d) (10.20)
Note the separation of the spatial and particle dependencies.
m 10.7 Identification of the Sp(2, R) Subgroup

Let us introduce three operators defined by
Q=XpiXpi, T=XpiPi+ PiXp, K=P,;P, (10.21)
and having the non-zero commutation relations
[Q,K]=2T, [Q,T]=4iQ, [K,T]=-4K (10.21)

These commutation relations are those of a three element Lie algebra. Let us first decide if the algebra
is compact or non-compact. This we may do by calculating the metric tensor

9ij = cipchy (10.22)
where the ¢}, are the structure constants of the Lie algebra. Noting Eqn. (10.21) we have
ok =20, c3p=4i, chp=—4i (10.23)

Recall that the structure constants are antisymmetric. We now find for the diagonal elements of the
metric tensor

900 = 9xkk =0
9TT = CFoCho + e = —4i x —4i + 4i x 4i = —32 (10.24)
In addition we have the off-diagonal elements
JOK = GKQ = CopChq + Chrchy = 4i x —2i + 2i x —4i = 16 (10.25)

and thus the complete metric tensor is represented by the matrix

Q K T
Q /0 16 0
[gij] =K 16 0 0 (1026)

T7\0 0 =32

We can produce a diagonal metric tensor by putting

1
Ay = —(Q K 10.27
+ \/§(Q ) ( )
to give the Lie algebra as
[As,T] = 4iA+, [Ay, A =2T (10.28)
and the metric tensor as
Ay A T
Ay (=16 O 0
[gij] = A_ 0 +16 0 (10.29)

T 0 0 =32

We first note that the metric tensor has det |g;;| 0 and hence we can conclude that the Lie algebra is
semisimple. Furthermore the metric tensor is indefinite as required for the algebra to correspond to be
non-compact. and hence our Lie algebra is necessarily

S0(2,1) ~ Sp(2, R) (10.30)
m 10.8 Back to the Quantum Dot Hamiltonian
We can express terms in the Hamiltonian of an isotropic harmonic oscillator

1 mw?>
H,=—P,P; + —X,; X (10.31)
2m 2



in terms of the group generators of Sp(2, R) by noting that

1 1
— PPy =—K
2m 2m
and N )
mw mw
TXT'iX‘I"i = TQ
to give
1 mw?
H,=—K
= omt T @

Now consider our earlier Hamiltonian
Hopace = 2m sz + m wi( )Z |ri]? + ; [QVO —5m Qz|n,rj|2] i ZL“
1<j 1

We can write the electron-electron interaction term for an N —electron quantum dot as

m?
NN -1V - 1 (Xpi = Xsi) (Xpi — Xsi)
leading to
1 eB m?
Hspace = %K OQ - —L12 + N( - l)VO + 2 %: Qrs
with

. B ..
02 =w?+ (%)2 — N2

(10.31)

(10.32)

(10.33)

(10.5)

(10.34)

(10.35)

The significance of these results is that the first three terms in Eqno. (10.34) have been expressed in
terms of the generators of Sp(2, R) (K, @) and O(d) (L12) and the last term in terms of generators of the
group Sp(2N, R). A practical calculation then involves the evaluation of matrix elements of the group

generators in a harmonic oscillator basis.
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It was a dark and stormy night when R. H. Bing volunteered to drive some stranded math-
ematicians from the fogged-in Madison airport to Chicago. Freezing rain pelted the wind-
screen and iced the roadway as Bing drove on - concentrating deeply on the mathematical

theorem he was ea:plammg Soon the wmdshzeld was fogged rom t € energetzc emplanatwn

00 &
description got brighter, the mszbzh j ngt dzmmer Fmally, the conferees felt a tmce of hoze

for their survival when Bing reached forward - apparently to wipe off the moisture from t
windshield. Their hope turned to horror when, instead, Bing éjrew a figure with his finger
on the foggy pane and continued his proof - embellzshmg the illustration with arrows and
helpful laZ ;/5 as needed for the demonstration.
— Prof. R H Bing, famous US topologist

m 10.1 Introduction

Today I want to remark on properties of bosons and fermions. Recall that bosons are objects with
integer spin and that the wavefunction for N —identical bosons is totally symmetric while fermions are
objects with half-integer spin and that the wavefunction for N—identical fermions is totally antisymmetric.
Note the use of the word totally. Here we will be considering identical fermions, or bosons, in an isotropic
harmonic oscillator. The N —particle wavefunction is the product of a spin part with a spatial part
and symmetrization involves both parts. Thus a N —particle wavefunction maybe totally antisymmetric
(fermions) or totally symmetric (bosons) yet the spin or spatial parts need not be, their product must be.
I will start by going through the analysis of the isotropic harmonic oscillator for a single particle and then
sketch the problem of enumerating states for the case of N —noninteracting particles - bosons or fermions.
Much of what we have to say in this lecture is applicable to nuclei, quantum dots and statistical physics.

m 10.2 The isotropic three-dimensional harmonic oscillator

For a one-dimensional harmonic oscillator one has the well-known energy spectrum (putting
h=1)
E,=(n+1%)w n=0,1,... (1)

where v is the usual frequency. We can regard an isotropic three-dimensional harmonic oscillator as three
one-dimensional harmonic oscillator each of frequency v and energy eigenvalues

E,=(n+3)v n=0,1,... (2)

with
n=ng+ny+n, Ng, Ny, Nz =0,1,... (3)

Each state may be labelled by the triplet of numbers (n,,n,,n) and for a given value of n we will obtain
(n + 1)(n + 2)/2 distinct triplets (ng,ny,n.). For example, the first four levels are associated with the
states given below and corresponding to degeneracies, 1, 3, 6, 10. The triplets of quantum numbers
can be regarded as the weights of the irreducible representations {n} of the degeneracy group U(3). As
the isotropic three-dimensional harmonic oscillator is clearly rotationally invariant we could extend our
description of our states by using the group chain

U(3) > SO(3) > SO(2) (4)

and uniquely label the states by the set of quantum numbers |nfmy), noting that for n odd and even we
have the U(3) — SO(3) decompositions

[0] if n is even

n—>[n]—|—[n—2]—|—...+{[1] if n is odd (5)



Table 1. The values of the triplets (n,,n,,n,) for the first four levels of an isotropic three-dimensional
harmonic oscillator.

n <nxany>nz)
0 (0,0,0)
1 (1,0,0)
(0,1,0)
(0,0,1)
2 (2,0,0)
(0,2,0)
(0,0,2)
(1,1,0)
(1,0,1)
(0,1,1)
3
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So far we have ignored the spin of our single particle. It is the spin of our particle that determines
whether we are considering fermions or bosons. A complete description of the one-particle states requires
the complete set of quantum numbers |smgsnfmyg). This increases the degeneracies by a factor of (2s+1)
and extends the degeneracy group to SU(2) x U(3). Let us now look carefully at the case of two identical
noninteracting fermions or bosons in a one-dimensional harmonic oscillator.

Two-particles in a one-dimensional harmonic oscillator

Let us suppose we have a boson with spin s = 0 and a fermion with spin s = % Placed in

a one-dimensional harmonic oscillator we have an infinite set of equi-spaced energy levels that may be
indexed by integers m = 0,1,.... Each level has a spatial degeneracy of 1 and a spin degeneracy of
25 + 1. The degeneracy group is SU(2) x U(1) with each level labelled as 2s*1{m} with m labelling
the one-dimensional irreducible representations of U(1). The complete set of one-particle states span the
infinite set of SU(2) x U(1) irreducible representations that may be succinctly written as

{2s} x M, (6)
where

M= {m}. (7)

Now consider we place two noninteracting bosons (or fermions) in a one-dimensional harmonic
oscillator. The bosonic two-particle states must be totally symmetric and the fermionic states totally
antisymmetric with respect to the spin and spatial variables.

For the bosons the states all have S = 0 and the spatial symmetries come from extracting the
symmetric part of M x M under U(1) to give

{M x M}sym = Zgn{n}’ (8)



where n
n_ |2 1

"= 5] +1, (9)
with [%] is the integer part of /2. Thus the degeneracy of the two-particle boson state labelled as n
will be g™.

Now consider the two-fermion states. These will have spin .S = 0 (spin singlets) or S = 1 (spin
triplets). At the U(1) level the spatial part for the spin singlets will involve the symmetric part of M x M
and hence give rise to the same states as in Eq.(8) while for the spin triplets the spatial part will involve
the antisymmetric part of M x M with

{M x M}anei = Z {p}, (10)
p=1
where )
P = {L] +1. (11)
2
Clearly,
P =gP L (12)

Thus there is a one-to-one correspondence (relative to their respective ground states) between
multiplicities of the S = 0 two-particle states of a pair of identical bosons or fermions. Likewise there is
a one-to-one correspondence between the multiplicities of the S = 0 states of a pair of identical bosons
and those of the S = 1 states of a pair of identical fermions shifted according to Eq.(12).

Results of (8) and (10) follow directly from

K Grudzinski and B G Wybourne, J. Phys. A:Math.Gen.29,6631 (1996).
N noniteracting particles in a one-dimensional harmonic oscillator

For N —noninteracting bosons in a one-dimensional harmonic oscillator one simply enumerates
the U(1) content of the symmetric part of the N—fold product M@V} to find that

MO = 3 gk (k) (13)
k=0

where g% is the number of partitions of k into at most N parts allowing repetitions and null parts. For
example,

MU S0} + {1} 4 2{2} + 3{3} + 5{4} + 6{5} + 9{6} + 11{7}
+15{8} + 18{9} + 23{10} + ... (14)

Now consider N —noninteracting fermions. To describe the multiplicities of the levels we need
the antisymmetric SU(2) x U(1) content of

({1} x M)PUTF = 37 (o} x MO (15)

where the sum is over all partitions (o) = (01,02) of N into at most two parts with (¢’) being the
partition conjugate to (), involving partitions whose Young frame involves at most two columns. Thus
for N = 4 we would have

({1} x M)PUY = {4} x MO0 4 (31} x MO 4 (22} M2 (16)
The spin S, to be associated with a given partition (o1, 02) is

- g1 — 09
So = —5— (17)

Under U(1) the tensor products, say {p} x {q}, have the simple form

{r} x{q¢} ={p+4q} (18)



Using this fact one can show that under U(1)

oo

MELT = N e (19)

N(N—-1
=N

where ¢ is the number of partitions of the integer £ into N distinct parts including the null part. In fact

=gk if (=k+ X0 (20)
This can be seen by noting that we can map the sets of partitions into the other by adding, or subtracting,
pn = (N —1,...,2,1,0). Adding py to the partitions of k into at most N parts converts them into
partitions, all of whose parts are distinct.

Thus in a one-dimensional harmonic oscillator there is a one-to-one correspondence between the
multiplicities of the states of N identical bosons and those of the maximal spin states of N identical
fermions. For four identical fermions we obtain the U(1) content for the states with S = 2

MY 516} + {7} + 2{8} + 3{9} + 5{10} + 6{11} + 9{12}
+11{13} + 15{14} + 18{15} + 23{16} + ... (21)
which may be compared with Eq.(14).

However, the spatially antisymmetric states are not the complete set of states for N noninteract-
ing fermions, one also has the mixed symmetry states associated with the other spin states. For example,
for N = 4 we also have the U(1) states with spin S = 1 coming from

MEEY 5€3) 1 2{4} + 4{5} + 6{6} + 10{7} + 14{8} + 20{9}
+26{10} 4+ 35{11} + 44{12} + 56{13} + 68{14}
+84{15} 4+ 100{16} + . .. (22)

and for the spin S = 0 states

M2} 502} 4 (3} + 3{4} + 4{5} + 7{6} + {7} + 14{8} + 17{9}
+24{10} + 29{11} + 38{12} + 45{13} + 57{14}
+66{15} + 81{16} + ... (23)

N noninteracting particles in an isotropic three-dimensional harmonic oscillator

In this case the degeneracy group is SU(2) x U(3). Let us consider a single fermion of spin s = %
The spin spans the {1} irreducible representation of SU(2) while the orbital states span the irreducible
representations {m} of U(3) with m = 0,1,...,00. Thus for a single fermion the complete set of states

span the reducible representation {1} x M of SU(2) x U(3) with

M= {m} (24)

Let us set the groundstate energy to zero and assume the levels are equi-spaced by an energy AFE. For
N noninteracting particles in an isotropic three-dimensional harmonic oscillator we obtain the totally
antisymmetric states, under SU(2) x U(3),

({1} x M) ® {1V} = Z {m—n} x (M ®{2"1™""}) (25)
m>n>0,m+n=N
= > eeare Ty (20

m>n>0m+n=N

- z_: 25+ (M @ {27 +5125)) (27)

Smin



where

1 . .
S R 5 if N 1S Odd 28
e { 0 if N iseven (28)

The spin multiplicity, (25 4 1), is given as a left superscript in (26) and (27).

For four identical, noninteracting, fermions of spin % we obtain, to weight 10 in U(3) the states:-

112} + 2 Y21} + 1212} + 3 1{22} + 2 {221}
+ {23} + {3} + 3 {31} + 3 1{31%) + 5 1{32}
+ 6 {321} + 3 1{32?} +21{3%) + 5 {321} + 3 1{322}
+ 1{3%} + 3 14} + 7 141} + 5 {412} + 12 {42}
+ 12 {421} + 8 1{42%} + 11 1{43} + 14 1{431} + 12 1{432}
+ 5 {432} + 11 1{4?} + 11 {421} + 12 1{422} + 4 {5}

+ 11 {51} + 10 1{51?} + 19 1{52} + 22 {521} + 13 1{52?}
+ 21 {53} + 30 {531} + 24 {532} + 24 {54} + 32 {541}
+ 14 {52} + 716} + 18 {61} + 15 1{61?} + 32 {62}
+ 36 {621} + 24 1{62?} + 39 {63} + 52 {631} + 48 {64}
+9 Y7} + 25 Y71} + 23 Y{71%} + 45 Y72} + 54 Y721}
+ 59 1{73} + 14 {8} + 37 {81} + 32 1{81?} + 67 {82}
+ 17 1{9} + 48 {91} +24 {10 } + 3{1?} + 3{13}

+ 2 3{21} + 3 3{21%} + 3{2%} + 2 3{221} + 3{3}

+ 5 3{31} + 6 3{312} + 6 3{32} + 8 3{321} + 3 3{322}
+ 73{3%} + 9 3{3%1} + 73{3%2} + 4 3{3%} + 2 3{4}

+ 9 3{41} + 11 3{41?} + 12 3{42} + 17 3{421} + 7 3{42%}
+ 16 3{43} + 23 3{431} + 17 3{432} + 11 3{432%} + 10 3{4?}
+ 16 3{4°1} + 12 3{422} + 4 3{5} + 16 3{51} + 18 3{51?}
+ 24 3{52} + 32 3{521} + 16 3{52?} + 34 3{53} + 48 3{531}
+ 38 3{532} + 32 3{54} + 48 3{541} + 26 3{5%} +63{6}

+ 24 3{61} + 28 3{617} + 38 3{62} + 52 3{621} + 27 3{62?}
+ 56 3{63} + 82 3{631} + 60 3{64} + 10 3{7} + 36 3{71}
+ 40 3{71%} + 60 3{72} + 80 3{721} + 90 3{73} + 14 3{8}
+ 50 3{81} + 56 3{81%} + 85 3{82} + 20 3{9} + 69 3{91}
+263{10 } + °{1%} + °{21%} + °{31} + 35{31%}
+ °{32} + 2 °{321} +25{3%} + 4 °{3%1} + 2 5{3%2}
+ 35{3%} + 2 °{41} + 5 °{41%} + 3 °{42} + 5 °{421}
+ °{42%} + 5 5{43} + 9 °{431} + 5 °{432} + 5 °{43%}
+ 3 °{4%} + 5 5{4%1} + 3 5{4%2} + 3 5{51} + 8 5{512%}
+ 55{52} + 10 {521} + 3 5{522} + 95{53} + 18 {531}
+ 12 5{532} + 8 {54} + 16 5{541} + 6 °{5?} + 5{6}

+ 6 °{61} + 11 5{61%} + 10 5{62} + 16 5{621} + 6 °{62%}
+ 17 5{63} + 29 5{631} + 18 5{64} + 5{7} +9°{71}
+ 17 °{71?} + 15 °{72} + 26 {721} + 26 5{73} +25{8}

+ 13 5{81} + 22 5{81?} + 23 5{82} + 3 °{9} + 18 5{91}
+55{10} +... (29)

Terms having U(3) irreducible representations, {\}, of the same weight, |\|, will have the same
energy, E), relative to the groundstate and independent of their spin multiplicity (25 + 1). A state
(28 +1){\} will have

E, =|\AFE (30)

For our four-fermion example the groundstate involves the 15 states arising from {2} +3 {12}.
The 6 states coming from {2} can be viewed as arising from putting 2 fermions in the 1s orbitals and 2
in 1p orbitals to give rise to the two spectroscopic terms 1.SD while the 9 states coming from 2{12} can
likewise be viewed as arising from putting 2 fermions in the 1s orbitals and 2 in 1p orbitals but this time
the orbital space is antisymmetric and the spin space symmetric and hence forming the spectroscopic



term 3P. NB. In atomic spectroscopy the one-electron states are given the traditional n labels viz.
1s,2s,3s,...,2p,3p,4p, ...,3d,4d,5d, ..., 4f,5f,6f,... (31)

whereas in nuclear shell theory, where the isotropic three-dimensional harmonic oscillator is a useful
starting point, the convention is to label the one-nucleon orbits with

1s,28,3s,...,1p,2p,3p,...,1d,2d,3d,...,1f,2f,3f,... (32)
Here we follow the latter convention.
The next level involves the terms
H2{21) + {31) 7 ({17} +2{21} + {3}) +° {1%} (31)
and hence a total degeneracy of 112. These are just the spectroscopic terms arising from the configurations
(15)*(1p)(2s), (1s)*(1p)(1d), (1s)(1p)°>.

In the above we have indicated how to count terms etc without calling upon the properties of
the non-compact groups. That topic is largely covered in

K Grudzinski and B G Wybourne, Symplectic models of n—particle systems, Rep. Math. Phys.
38, 251-266 (1996).



Symmetric Functions and the Symmetric Group 12
B. G. Wybourne

m 12.1 Introduction

In this lecture I want to continue to discuss N —noninteracting fermions or bosons in a isotropic
d-dimensional harmonic oscillator leading up to partition functions for such systems. This is of course
just the beginning as one must eventually put in realistic interactions taking the non-interacting case
as a basis. We want to pay particular attention to the enumeration of the complete set of basis states.
This can be done in a number of ways each related to the other by some unitary transformation. One
can start by considering the non-compact metapletic group Mp(2Nd) and then working down through
various compact and non-compact subgroups as in

1. K Grudzifiski and B G Wybourne, Symplectic models of n—particle systems, Rep. Math. Phys.

38, 251-66.

However, in this lecture I shall try to keep the approach relatively simple, starting with a single
fermion or boson in a isotropic d-dimensional harmonic oscillator to establish a basis and then discuss
the case of various approaches to the problem of N identical noninteracting bosons or fermions. We will
assume that the spin of the single particle is s; (or sy) for the boson (or the fermion). I shall assume
familiarity with earlier lectures in this series.

m 12.2 Single-particle states for a isotropic d-dimensional harmonic oscillator

We introduce three schemes for describing a single particle (fermion or boson) in a isotropic
d-dimensional harmonic oscillator.

m 1. A non-compact scheme

The infinite set of spatial states span the basic infinite dimensional unitary harmonic series
irreducible representation A and classify the states under the scheme

SU(2) x (Mp(2d) > Sp(2d,R) > U(d) > O(d) > ... U(1)) (1)

Note that we have a direct product with SU(2) being the group describing the spin part of our wavefunc-
tion and the Mp(2d) group and its subgroups the spatial part. Recalling that under Mp(2d) > Sp(2d, R)

A—AL+A (2)

while under Sp(2d,R) D U(d)
Ay — My (3a)
A_— M_ (3b)

with

My = {2m} (4a)

M_ = i{Qm—i— 1} (4b)
M =M, +M_=) {m} (4¢)

We also recall that under U(d) D O(d) we have the general result

{A} = [V D] ()

where D is the infinite S—function series

D =Y {5} (6)
5



Where the summation is over all partitions (§) whose parts are all even.
For details see

2. K Grudzinski and B G Wybourne, Plethysm for the noncompact group Sp(2n,R) and new S-
function identities J Phys A:Math.Gen.29, 6631-41 (1996).

3. R CKing and B G Wybourne, Holomorphic discrete series ... J Phys A:Math.Gen.18, 3113-39
(1985).

4. R C King and B G Wybourne, Products and symmetrized powers of irreducible representations
of Sp(2n,R) and their associates J Phys A:Math.Gen.31, 6669-89 (1998).

5. R C King and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-
dimensional irreps of Sp(2n,R), J. Math. Phys.41, 5002-19 (2000).
6. R CKing and B G Wybourne, Analogies between finite-dimensional irreps of SO(2n) and infinite-
dimensional irreps of Sp(2n,R), Part II:Plethysms, J. Math. Phys. 41, 5656-90 (2000).
m 2. The SU(2) x U(d) scheme
In this scheme the spin s belongs to the group SU(2) and spans the SU(2) irreducible represen-

tation {2s} while the spatial parts span the infinite set of irreducible representations of U(d) labelled by
one-part partitions {m} so we can symbolically designate the SU(2) x U(d) single particle states by

{25} x M = {25} x {m} (7)

m=0

the distinction between bosons and fermions being made at the SU(2) level. The even parity states will
be associated with the even values of m and the odd parity states with the odd values of m.

m 3. The U(1) x U(d) scheme

In this scheme we work at the spin projection level where the different mg states span one-
dimensional irreducible representations of the Abelian group U(1) which we will choose to label as {m}
and remember that for U(1) the Kronecker products are such that

{r} x{¢} ={p+4q} (8a)

while for symmetrized powers (or plethysms)

o0 if 6(\) >1
wom={0 . 21 (31)
the complete set of single particle states will span the reducible representation
> Amdx M (9)

m 12.3 N—noninteracting particles in a isotropic d-dimensional harmonic oscillator

The distinction between bosons and fermions becomes crucial when we consider more than one
particle. Throughout we shall assume that the N particles are indistinguishable. The basic ansatz is
that for bosons the N —particle wavefunctions must be totally symmetric with respect to all permutations
of the N particles while for fermions the IN—particle wavefunctions must be totally antisymmetric with
respect to all permutations of the N particles. In other words boson wavefunctions are permanental
while those of fermions are determinantal. If our wavefunction is constructed as products of spin and
spatial parts then the symmetrization of the spin and spatial parts need not themselves be symmetric (or
antisymmetric) but their product must follow the correct statistics. Before continuing a brief diversion
to recall some results involving plethysms, recalling parts of earlier lectures. Those unfamiliar with
the properties of plethysms might consult some of the references listed in my publications, particularly
publications 32,35,39,45,83,88,154 and references contained therein.

m Plethysm for direct products of groups

In many applications we are involved with the direct product of two groups (more than two poses
no new difficulties) say, G x G’ with irreducible representations Ag x Bg: and we need to determine the



G x G’ content of N—fold product of an irreducible representation say (A x B)*™ (henceforth we drop the
subscripts) and extract the part of the product symmetrized according to the permutational symmetry
{A}. In terms of plethysm we have

(AxB)@{A} =) (4@ {p-A}) x (B@{p}) (10)

where {p - A} signifies a S—function inner product which is null unless the partitions (p) and (\) are of
the same weight, i.e. |p| = |A\]. Two special cases are of interest

{p} i {A} = {N} and |p[ = |}
{p- {0} = (11)
{p'} it {A} = {17} and |p| = |)|
where the partition (p’) is conjugate to (p).

By way of example we have

(AxB)@ {4} = (A0 {4}) x (B {4}) + (A® {31}) x (B® {31}) + (A ® {2°}) x (B ® {2?})
+(A®{21%}) x (B®{21°}) + (A® {1*}) x (B® {1*}) (12a)

(AxB)@ {1V = (A® {4}) x (B® {1*}) + (A® {31}) x (B® {21%}) + (A ® {2?}) x (B ® {2%})
+(A®{21%}) x (B® {31})+ (A® {11}) x (B® {4}) (12b)

In many cases of interest only some of the terms in the right-hand-side of (12) will be non-null. This is
particularly the case when one of the groups is of low rank, e.g, SU(2) or U(1). To be specific, let us
henceforth consider bosons of spin s, = 1 and fermions of spin sy = % In this case the boson spin spans
the {2} irreducible representation of SU(2) while the fermion spin spans the {1} irreducible representation
of SU(2). There is no difficulty in going to higher spin states.

m The SU(2) x Mp(2d) scheme

In this scheme the single particle spans the representation {2s} x A of SU(2) x Mp(2d) and for
N —noninteracting particles we have

({2} x A) @ {N} = Z({Q} @ {p}) x (A®{p}) for bosons (13a)
{1} x A)e {1V} = Z({l} @ {p'}) x (A®{p}) for fermions (13b)

Let us consider the evaluation of the SU(2) plethysms, first for fermions and then for bosons.

We have noted earlier that for fermions of spin sy = 1 that {1}®{p} = {p} and that the partition
(p) can involve at most two parts and in SU(2) we have the irreducible representation equivalence

{p1.p2} = {p1 — p2} (14)
leading to
(I xAde M= 3 (A {2512 (15)
S=Smin
1 ifNisodd
Somin = (16)
0 if N is even

Thus for N = 4 fermions we have
{1 xd)e {1 =" (A {1')+* (Ao 21°)) +' (Ao {2%}) (17)
Recalling the isomorphisms between SO(3) and its covering group SU(2) we have under SU(2) ~
SO(3) {2} ~ [1] leading to
{2} @ {p} ~ [p/D] (18)



The right-hand-side of (18) gives the spins for each partition (p) appearing in (13a). Furthermore, (p)
can involve at most three non-zero parts and those involving three non-zero parts are equivalent to a
partition with two or less parts via

{p1,p2,p3} = {p1 — p3,p2 — p3} (19)

NB If [p/D] leads to partitions involving more than one non-zero part then the SO(3) modification
rules need to be applied. Assuming (19) has been applied leaving a SO(3) non-standard irreducible
representation [a, b] then
0 ifb>2
[a,b] = (20)
[a] ifb=1

with the above in mind we can use (13a) to give for four spin 1 bosons
{2} x A) @ {4} =0 (A @ {4}) +TH) (A @ {31}) +° (A @ {21°}) +TD (A @ {2°})  (21)

Where again the multiplicities (25 + 1) are given as left superscripts. To complete the examples of this
scheme one should evaluate the various plethysms for the relevant metapletic group and then branch
through the various subgroups. We shall not do that at this time.

m The SU(2) x U(d) scheme
In this scheme one starts with (7) and evaluates the relevant plethysms as in the previous scheme.

For the spin part there are no changes. The U(d) irreducible representations are combined as the single
infinite dimensional reducible representation M. Thus for N spin % fermions we have from noting (15)

vz

({1} x M) @ {1V} = (M @ {2F75125)) (22)
S=Smin

and for four fermions
{1} x M) @ {11} => (M @ {1*}) +* (M @ {21%}) +' (M @ {2°}) (23)

as indeed found and expanded in the previous lecture. For NV bosons of spin 1 the result comes from (21)
by simply replacing A by M throughout.
m The U(1) x U(d) scheme

In this scheme we treat spin at the level of its projection mg. Clearly in each scheme there
must be a complete accounting of all the quantum states and respecting symmetrization. In the case of
fermions of spin % we have for N particles

N

(3 x M)+ ({=3rx M) @ {1V} =3 ({5} x M) @ {1V 7)) x ({=5} x M) @ {17})  (24)

=0
Noting (8a) and (8b), we can rewrite (24) as
N

({3} x M) + ({3} x M) @ {17} =Y ({F55} x (M @ {1N=7})) x ({-§} x (M @ {17})) (25

z=0

Notice that (25) involves the product of two terms, the first term, ({£52} x (M ® {1V~2})), involves

2
states with spin projection Mg = & 5= (spin-up) which are antisymmetric in their spatial part while the

second term, ({—%} x (M ® {17})),involves states with spin projection Mg = —% (spin-down) which

are again antisymmetric in their spatial part. Equation (25) involves Kronecker products in U(1) and in
U(d) and (25) may be rearranged as

N

({3 x M)+ ({=3} x M) @ {1V} =3 ({FF2} < {=5}) x (M @ 1V} x (M @ {1}))  (26)

z=0

The first Kronecker product can be evaluated using (8a) to give

({5 < {=5) ={s -2} (27)




and the second using the plethysm property

(A@{A}) x (Ae{n}) =A@ {A} x{n}) (28)
leading to
(M@ {1¥77}) x (M ®{17})) = M o {1V} {17}) (29)
with the - implying ordinary S—function multiplication. Combining (27) and (29) in (26) finally gives
(3 x M)+ (=3} x M) @ {1V} =Y {5 —a} x (M@ ({1V7}-{17})) (30)

For four fermions of spin % we obtain

({3} x M) + ({3} x M)) @ {1}
= {2} x (M ® ({1} -{0})) + {1} x (M @ ({1°} - {1})) + {0} x (M @ ({1°} - {1%}))
+{=1} x (M@ ({1} -{1°}) + {2} x (M @ ({0} - {1%})) (31a)

= ({2} +{-2h) x Mo {1'}) + ({1} +{-1}) x (M ® ({1°} - {1}))
+1{0} x (M @ ({17} - {17})) (310)

= ({2} + {2 x (M @ {1"}) + ({1} + {~1}) x (M © ({1} + {21°}))

+{0} x (M ® ({1*} + {21%} + {2°})) (31c)
Comparison with (17) and (23) shows, as should be, that the same number of quantum states are obtained
in each scheme. We note that the above scheme was first used by Shudeman® to determine the states
arising from configurations of equivalent electrons ¢V though without using group theory. It was then
used by Judd” to recast atomic shell theory, Judd giving a group formulation to the scheme and naming
it LL—coupling. I have given further details®.

Let us return to the spin 1 bosons. Each boson has three spin states (Mg = 0, +1) that can
be described by the U(1) irreducible representations {1}, {0}, {—1}. For N—noninteracting bosons we
have from plethysm

({1} x M + {0} x M + {1} x M) ® {N}

N =z
=D > {1 x M) @ {N —a}) x ({0} x M) ® {z —y}) x ({~1} x M) & {y})] (32a)

z=0y=0

=D D N —a} x (M@ {N —a})) x ({0} x (M @ {z —y})) x ({—y} x (M@ {y})] (32b)

r=0y=0

=> > UN-—ae—yyx(Me({N-a}-{z -y} {y})] (32¢)

z=0y=0
where in (32¢) the spin projection quantum number, Mg is
Mg=N-x—y (33)

For brevity, let us define

o= {52 @



For four spin 1 bosons we have from (32c)

({1} x M+ {0} x M+ {-1} x M) ® {4}

= ME(4)(M @ {4}) + Mg (3)(M ® {3} - {1}) + Mg (2)(M ® ({3} - {1} + {2} - {2})

+ MM @ ({2} {1} - {1} + {3} - {1}) + M (0)(M ® ({4} + {2} - {2} + {2} - {1} - {1})
(35a)

= ME(4)(M @ {4}) + Mgt (3)(M ® ({4} + {31})) + M (2)(M ® (2{4} + 2{31} + {2°}))

+ MU (D)(M ® (2{4} + 3{31} + {22} + {21%})) + ML (0)(M @ (3{4} + 3{31} + 2{2%} + {21%}))
(35b)

which is consistent with the Mg projection of the spins found in (21).

I am indebted to Jiirgen Schnack for pointing out to me the relevance of the scheme for computing
partition functions.

7. C L B Shudeman, J. Franklin Inst. 224, 501 (1937).
8. B R Judd, Atomic Shell Theory Recast, Phys. Rev. 162, 28-37 (1967).

9. B G Wybourne, Coefficients of fractional parentage and LL-Coupling, J. de Phys. 30, 35-8
(1969).

Additional information on boson-fermion relationships, not covered in these lectures, may be
found in

10. B G Wybourne, Hermite’s Reciprocity Law and the Angular Momentum States of FEquivalent
Particle Configurations, J. Math. Phys. 10, 467-71 (1969).

11. B G Wybourne, Statistical and Group Properties of the Fractional Quantum Hall Effect

(SSPCM’2000, 31 August - 6 September 2000, Myczkowce, Poland) Singapore: World Scientific
(In Press).
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