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1 Luttinger LK and Burt-Foreman BF Hamiltonians

The BF Hamiltonian reads,

HBF =


P ′ S− −R 0

S†− P” −C −R

−R† −C† P”∗ −S†+
0 −R† −S+ P ′∗

 (1)

where,

P ′ = 1
2 (kx(L+M)kx + ky(L+M)ky + kz(2M)kz) + i

2 (kx(N −N ′)ky − ky(N −N ′)kx)

P” = 1
6 (kx(L+ 5M)kx + ky(L+ 5M)ky + 2kz(2L+M)kz) + i

6 (kx(N −N ′)ky − ky(N −N ′)kx)

P”∗ = 1
6 (kx(L+ 5M)kx + ky(L+ 5M)ky + 2kz(2L+M)kz)− i

6 (kx(N −N ′)ky − ky(N −N ′)kx)

P ′∗ = 1
2 (kx(L+M)kx + ky(L+M)ky + kz(2M)kz)− i

2 (kx(N −N ′)ky − ky(N −N ′)kx)

R = 1
2
√
3
[kx(L−M)kx − ky(L−M)ky − i(kx(N +N ′)ky + ky(N +N ′)kx)]

R† = 1
2
√
3
[kx(L−M)kx − ky(L−M)ky + i(ky(N +N ′)kx + kx(N +N ′)ky)]

S− = − 1√
3
[k−Nkz + kzN

′k−]

S†− = − 1√
3
[kzNk+ + k+N

′kz]

S+ = − 1√
3
[k+Nkz + kzN

′k+]

S†+ = − 1√
3
[kzNk− + k−N

′kz]

C = − 1
3 (kz(N −N ′)k− − k−(N −N ′)kz)

C† = − 1
3 (k+(N −N ′)kz − kz(N −N ′)k+)

(2)

with L,M,N,N ′ being the Stravinou-van Dalen mass parameters. By setting constants these parameters the

BF Hamiltonian turns into the LK one:
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HLK = −


P +Q −S R 0

−S† P −Q 0 R

R† 0 P −Q S

0 R† S† P +Q

 (3)

with

P = [γ1(kx2 + ky2 + kz2)]/2

Q = [γ2(kx2 + ky2 − 2kz2)]/2

R = [−
√

3γ2(kx2 − ky2) + i 2
√

3γ3kxky]/2

S = γ3
√

3(kx− i ky)kz

S† = γ3
√

3kz(kx+ i ky)

R† = [−
√

3γ2(kx2 − ky2)− i 2
√

3γ3kxky]/2

Q† = Q

(4)

where γ1, γ2, γ3 are the so-called Luttinger parameters, related to the Stravinou-van Dalen parameters L,M,N,N ′.

In particular, L−M = −3γ2, 3L+M = −2γ1 − 5γ2, N −N ′ = 1 + γ1 − 2γ2 − 3γ3 and N +N ′ = −3γ3.

2 Symmetry of the Luttinger LK and Burt-Foreman BF Hamilto-

nians

The symmetry of the LK Hamiltonian (or the BF) is cubic. However, by imposing the restriction γ2 = γ3

we turn it isotropic, i.e. spherical symmetric, as we show next. In terms of invariants1 we can write the LK

Hamiltonian as:

HLK = − 1

m0

(γ1 +
5

2
γ2)

k2

2
I0 − γ2

∑
i=x,y,z

k2i J2i − 2γ3
∑

i=x,y,z

{ki, ki+1}{Ji, Ji+1}

 . (5)

Since

(k · J)2 = (k · J)(k · J) =
∑

i=x,y,z

ki Ji
∑

j=x,y,z

kj Jj =
∑

i=x,y,z

k2i J2i +

i,j=x,y,z∑
i6=j

kikj JiJj

=
∑

i=x,y,z

k2i J2i +

i,j=x,y,z∑
j<i

(kikj JiJj + kjki JjJi) (6)

and assuming that the magnetic field is zero (so that kikj = kjki = (kikj + kjki)/2 = {ki, kj}). Then,2

1See eq. 19 in the internal repot of July 18,2014
2Warning: Voon[1] p.113 does not require the absence of magnetic field, as it must be.
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(k · J)2 =
∑

i=x,y,z

k2i J2i + 2

i,j=x,y,z∑
j<i

{ki, kj}{Ji, Jj}

=
∑

i=x,y,z

k2i J2i + 2
∑

i=x,y,z

{ki, ki+1}{Ji, Ji+1} (7)

and (in the absence of magnetic field) eq. 5 can be rewritten as:

HLK = − 1

m0

(γ1 +
5

2
γ2)

k2

2
I0 − γ2(k · J)2 + 2(γ2 − γ3)

∑
i=x,y,z

{ki, ki+1}{Ji, Ji+1}

 . (8)

By imposing γ2 = γ3 then HLK becomes isotropic.3 A less restrictive approximation is the so-called axial

approximation in which γ2, γ3 are replaced by γ̄ = (γ2 + γ3)/2 in the R and R† matrix elements of eq. 3

(H13, H24, H31 and H42) but keeping γ3 in the rest of matrix elements (S elements in eq. 3: H12, H21, H34 and

H43) and the same for γ2: it is kept in Hii, i = 1, 2, 3, 4.

In terms of invariants, the axial approximation to the LK Hamiltonian reads,

HLK = − 1

m0

(γ1 +
5

2
γ2)

k2

2
I0 − γ2

∑
i=x,y,z

k2i J2i + (γ2 − γ̄)
k2x − k2y

2
(J2x − J2y)

−2γ3
∑

i=x,y,z

{ki, ki+1}{Ji, Ji+1}+ 2(γ3 − γ̄){kx, ky}{Jx, Jy}

 . (9)

i.e., a term − 1
m0

[
(γ2 − γ̄)

k2x−k
2
y

2 (J2x − J2y) + 2(γ3 − γ̄){kx, ky}{Jx, Jy}
]

with γ̄ = (γ2 + γ3)/2, is added to the

Hamiltonian. Of course, should γ2 = γ3 then this term is zero.

If we include an axial magnetic field then only axial symmetry (Cn) is preserved. This symmetry can be ad-

ditionally reduced by an external potential, as e.g. the confining potential. Should the confining potential has

the triangle symmetry then, only the C3 symmetry group survives. Since heavy hole HH and light hole LH

are degenerate at the Γ point, we face a four-fold degeneration (including spin). Then, since C3 has only three

irreps, the reduction of symmetry up to C3, originated from the confining potential, can yield symmetry-related

singular physical behaviours. Since the relevant part of the multi-band Hamiltonian describing the HH and LH

states is the four-bands Hamiltonian eq. 3 (or the four-bands Hamiltonian eq. 1 for position-dependent mass

parameters), we restrict ourselves to the four-band Hamiltonian. The inclusion of the split-off bands yielding the

six-band Hamiltonian would reflect a similar behaviour in the presence of a confining potential with triangular

symmetry. All the same, since HH/LH are not degenerate with the split-off band at the Γ point, no similar

singular symmetry-related behaviour is expected in the presence of a confining potential with five-fold rotational

3By replacing γ2, γ3 by γ̃ = (2γ2 + 3γ3)/5 one gets the best approximation (see e.g. Efros and Rosen [2] and Ekenberg and

Altarelli[3]).
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symmetry.

The C3 character table,

C3 E C1
3 C2

3 ε = ei
2π
3

A 1 1 1 z x2 + y2

E+ 1 ε ε∗ eiφ = x+ i y e−2iφ = x2 − y2 − 2ixy

E− 1 ε∗ ε e−iφ = x− i y e2iφ = x2 − y2 + 2ixy

allow us to determine the symmetry of the matrix elements of HLK . It is straightforward to see that P,Q, S

and S+ have the C3 group A,A,E− and E+ symmetries. However, as expected, R (and R†) has not C3

symmetry. However, by replacing γ2 and γ3 by γ̄ = (γ2 + γ3)/2, i.e. by considereing the axial approximation,

then R = −
√
3
2 γ̄(k2x − ky2 − 2ikxky) has E+ symmetry (and R† has E−). From the point of view of symmetry

HLK may be represented by:


A E− E+ 0

E+ A 0 E+

E− 0 A E−

0 E− E+ A

 or


1 ε∗ ε 0

ε 1 0 ε

ε∗ 0 1 ε∗

0 ε∗ ε 1

 , (10)

the first matrix enclosing the C3 symmetries and the second one the phase factors (C1
3 eigenvalues) associated

to the HLK matrix elements.

Under the restriction of axial approximation the rotational symmetry of the confining potential is preserved in

the full Hamiltonian, even in the presence of magnetic field. However, magnetic field do not preserve the full

symmetry of the confining potential, e.g. the mirror symmetry planes σi, i = 1, 2, 3 of the confining potential

are not symmetries of the complete Hamiltonian in the presence of magnetic field.

The same symmetry considerations apply to the BF Hamiltonian. In this case, the axial approximation means

replacing L −M and N + N ′ by their average in the R (and R†) matrix elements. We note that, in terms of

Luttinger parameters γ1, γ2, γ3, we have that L −M = −6γ2 and N + N ′ = −6γ3. Then, the axial approx-

imation means the same in both Hamiltoninans, as it should be. The symmetry of the BF matrix elements

P ′, P”, P”∗, P ′∗ is A, that of S± and S†∓ are E±, and that of R and R† (under the axial approximation) E+ and

E−. Finally C and C† have E− and E+ symmetries, respectively. Then, from the point of view of symmetry

HBF may be represented by:
A E− E+ 0

E+ A E− E+

E− E+ A E−

0 E− E+ A

 or


1 ε∗ ε 0

ε 1 ε∗ ε

ε∗ ε 1 ε∗

0 ε∗ ε 1

 . (11)
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The eigenfunctions of these two Hamiltonians are 4-component spinors. The components of the spinor have

precise C3 symmetry: the components are basis of different irreps of C3 with a single repetiton. This may

be understood from the well know case of axially symmetric confining potentials (C∞ symmetry group with

irreps labeled by M = 0, 1,−1, 2,−2, 3,−3, . . .). In this case the symmetry of the spinor components are

M,M + 1,M + 2 and M + 3. A symmetry reduction C∞ → C3 correlates M = 0, 1,−1, 2,−2, 3,−3, . . . with

A,E+, E−, A,E−, E+, A,E+, E−, . . . (see e.g. reference [4]). Also, these sequences can be derived from eq.

11. Since the eigenvectors components should have precise C3 symmetry, their possible symmetries are those

conjugated to the rows of the matrix in eq. 11 i.e.,
A

E+

E−

A



E−

A

E+

E−



E+

E−

A

E+



A

E+

E−

A

 . (12)

3 Rotation of the internal crystalline structure

The exact (non axial nor spherical approximated) Hamiltonian with a C3 symmetry confining potential will

have C3-related properties in a more o less extension depending on the accuracy that an axial or spherical

approximation describes the system. The axial approximation involves four non-diagonal matrix elements,

while the spherical approximation involves all matrix elements, including the diagonal ones. Should the spherical

approximation description actually holds on a system then the C3-related properties would be preserved after

a rotation of the crystalline structure with respect to the confining potential and the magnetic field (for the

kinetic energy, see eq. 8, is spherically symmetric within this approximation). In the case that the spherical

approximation was too severe and only the axial approximation can properly describe the physics of a system

then the C3-related properties would be destroyed by the abovementioned rotation of the crystalline structure.4

Finally, if γ2 is very different from γ3 so that even the axial approximation does not hold then no C3-related

properties will be revealed even in the case of a crystalline structure grown in the 001 direction (i.e. without

rotation of the internal crystalline structure).

3.1 From [001] to [111]: the rotation matrix

The rotation matrix employed is the following:[5]

Mrot =


1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

−
√

2
3 0 1√

3

 . (13)

We start from the Hamiltonian in the [001] direction, eqs. 1 and 3, in terms of invariants (e.g. eq. 9 for the LK

Hamiltonian) and replace ki and Ji appearing in these Hamiltonian as a function of the new coordinates k′i and

4However, as shown next, rotation of the crystalline structure from the [001] direction corresponding to a non-exactly axially

symmetric Hamiltonian up to the [111] direction yields a new Hamiltonian that has an exact axial symmetry.
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J′i according to,

k = Mrotk
′ J = MrotJ′ (14)

Once we reach the new matrices, the prime is removed from ki for the sake of a better presentation.

3.2 The [111] direction: LK Hamiltonian

The LK Hamiltonian in the [111] direction reads:[5, 6, 7]

HLK = − 1

2m0


P +Q −S R 0

−S† P −Q 0 R

R† 0 P −Q S

0 R† S† P +Q

 (15)

with

P +Q = (γ1 + γ3)(kx2 + ky2) + (γ1 − 2γ3)kz2

P −Q = (γ1 − γ3)(kx2 + ky2) + (γ1 + 2γ3)kz2

R = − 1√
3
(γ2 + 2γ3)k2− + 2

√
2√
3

(γ2 − γ3)k+kz

S = −
√
2√
3
(γ2 − γ3)k2+ + 2√

3
(2γ2 + γ3)k−kz

(16)

Axial approximation (γ2 = γ3) imply now eight matrix elements instead of four as in the [001] direction. How-

ever, we do not need to impose the γ2 = γ3 restriction, as the [111] Hamiltonian displays the required symmetry.

Then, In a real case, γ2 6= γ3, [001] direction will reveal a more or less closeness to the exact symmetry while

the [111] will display an exact symmetry.

Please note that if we start from the Hamiltonian HLK within the axial approximation, eq. 9, that displays

rotational symmetry around the z ([001]) axis and then we perform a rotation of this Hamiltonian up to the

[111] direction, then, the resulting rotated Hamiltonian has no rotational symmetry around the new z′ axis

pointing the [111] direction.

3.3 The [111] direction: BF Hamiltonian

The BF Hamiltonian in the [111] direction reads:

HBF = − 1

2m0


P ′ −S− R 0

−S†− P” C R

R† C† P”∗ S†+

0 R† S+ P ′∗

 (17)
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where,

P ′ = [kx(γ1 + γ3)kx + ky(γ1 + γ3)ky + kz(γ1 − 2γ3)kz]− i [kx(γ1 − 2γ2 − 3γ3)ky − ky(γ1 − 2γ2 − 3γ3)kx]

P” = [kx(γ1 − γ3)kx + ky(γ1 − γ3)ky + kz(γ1 + 2γ3)kz]− i
3 [kx(γ1 − 2γ2 − 3γ3)ky − ky(γ1 − 2γ2 − 3γ3)kx]

S− = − 1√
3

{
(k−γ1kz − kzγ1k−) +

√
2 [kx(γ2 − γ3)kx − ky(γ2 − γ3)ky + i (kx(γ2 − γ3)ky + ky(γ2 − γ3)kx)]

−2 [2k−(γ2 + γ3)kz − kzγ3k−]}

S+ = − 1√
3

{
(k+γ1kz − kzγ1k+) +

√
2 [kx(γ2 − γ3)kx − ky(γ2 − γ3)ky − i (kx(γ2 − γ3)ky + ky(γ2 − γ3)kx)]

−2 [2k+(γ2 + γ3)kz − kzγ3k+]}

R = − 1√
3

{
k−(γ2 + 2γ3)k− −

√
2 [kz(γ2 − γ3)k+ + k+(γ2 − γ3)kz]

}
C = − 2

3 [kz(γ1 − 2γ2 − 3γ3)k− − k−(γ1 − 2γ2 − 3γ3)kz]

(18)

4 Rotation in the Hamiltonian

Our complete Hamiltonian reads,

H = HBF + Hstrain + VpiezoI + Vconf I + VF I + HB (19)

where HBF , given in eq. 1, can be expressed as a function of kx, ky, kz, Jx, Jy, Jz. Hstrain has the same form as

HBF with the products kikj replaced by εij . HB is the magnetic terms in the Hamiltonian:

HB =

(
B2

0

8
(x2 + y2) +

B0

2
(xky − ykx)

)(
(γ1 −

5

2
γ2)I + γ2J2z

)
− κµBB0Jz. (20)

Vconf , VF and Vpiezo are the confining, electric and piezoelectric potentials. The magnetic and electric field

points in the grown direction as shown on the left of the figure.

Figure 1: The system grown in [111] direction with the magnetic B and electric F fields also along this direction.

The internal crystalline structure does not grow in the standard [001] direction but in the [111] one. Then, since

we have the expression of the Hamiltonian assuming the z axis to be along the [001] we must carry out some

rotations. At this regards, the matrix:
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M =


1√
6

1√
6
−
√

2
3

− 1√
2

1√
2

0

1√
3

1√
3

1√
3

 (21)

carry out the rotation of the coordinate axes (or the unit vectors defining them) from [001] up to [111], while

its transpose (inverse) keeps the axes and carry out the rotation (transformation) of the coordinates of a vector

while keeping fixed the coordinate axes (or the unit vectors defining them).

We want to keep the external axes and carry out a rotation of the crystalline structure. Then, we will use the

transformation matrix Mt (as we alredy used it in eq. 13). On the other hand, since we only want to rotate the

crystalline structure we keep unchanged the following terms of H: Vconf I, VF I and HB .5

The matrix HBF , eq. 1, is the result of written HBF in terms of kx, ky, kz, Jx, Jy, Jz and assuming a set of axes

to define the Ji matrices that correspond to the [001] grown. Similar considerations hold for Hstrain by replacing

kikj by εij . Actually, we should write k′x, k
′
y, k
′
z, J′x, J′y, J′z instead, because the unprimed axes correspond to the

[111] grown. Then, we should change the coordinates from primed to unprimed (we change coordinates and not

the axes or unit vectors). I mean, k′ represents the k-coordinates (J-coordinates etc.) in the primed axes ([001])

while k represents the k-coordinates in the unprimed axes ([111]). M is the matrix that turns the primed [001]

axes into the unprimed [111] ones and Mt the matrix that applied to the k-coordinates in terms of unprimed

[111] axis unit vectors yield the k-coordinates in terms of primed [001] axis unit vectors. Then we have:

k′ = Mtk

J′ = MtJ

ε′ij = Mt
iaMt

jbεab (22)

so that we end up with HBF and Hstrain in terms of unprimed coordinates.

We need next to introduce calculated values of the strain εij in Hstrain. We can calculate the strain either

with the geometry with z pointing [001] (right hand side of the figure) employing the elastic constants C [001]

or alternatively we can rotate the axes and obtain the geometry on the left hand side of the figure. In the new

axes the elastic constants are C [111] related to C [001] by:

C
[111]
ijkl = MiaMjbMkcMldC

[001]
abcd (23)

The calculation yields unprimed εij . Finally, I must calculate the piezoelectric potential. The situation is

similar: we know the relation p′i =
∑
k e

[001]
ijk ε′jk. However, we have calculated εij . Then we must rotate the axes

and obtain:

pi =
∑
k

e
[111]
ijk εjk (24)

with e
[111]
ijk =

∑
a,b,cMiaMjbMkce

[001]
abc .

5Actually, despite we keep the axes and then the Bloch functions so that nothing change, we do rotate the crystalline structure

thus modifying the interaction with remote bands. It turns, in particular, into a change of the diagonal perpendicular mass

coefficients, those of the term (k2x + k2y), where γ2 is replaced by γ3. The same replacement γ2 by γ3 must be done in eq. 20.
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5 The full symmetry of the hole wave-function

The complete scalar wave-function of a hole is a product of Bloch times envelope components, Ψ =
∑
i fi ui

where ui, fi are Bloch and envelope components, respectively. The heavy hole HH ground state of an axially

symmetric QD in the absence of external fields is two-fold degenerate. The components of the Bloch func-

tions are eigenfunctions of the z-component of the angular momentum Jz while the envelope components are

eigenfunctions of the z-component of the orbital angular momentum Lz. The complete scalar wave-function is

definend by the z-component of the total angular momentum Fz. The largest f1 component of the HH (up)

ground state (labeled with Fz = 3/2), has an orbital quantum number Mz = 0 while the largest f4 component

of other degenerate HH (down) ground state (labeled with Fz = −3/2), has also an orbital quantum number

Mz = 0. Schematically, we may write these eigenfunctions as:

Jz | Mz

3/2 | 0

1/2 | 1

−1/2 | 2

−3/2 | 3


;



Jz | Mz

3/2 | −3

1/2 | −2

−1/2 | −1

−3/2 | 0


(25)

If the QD confining potential is a triangular prism, then the symmetry group of the system is not SU2 anymore

but the double group C̄3 of the three-fold rotational group C3. We enclose next its calculated character table:

C̄3 E C1
3 C2

3 C3
3 C4

3 C5
3 eiMφ basis

A 1 1 1 1 1 1 M = 0,±3

E+ 1 ε ε∗ 1 ε ε∗ M = 1,−2

E− 1 ε∗ ε 1 ε∗ ε M = −1, 2

E1/2 1 −ε∗ ε −1 ε∗ −ε M = 1/2

E−1/2 1 −ε ε∗ −1 ε −ε∗ M = −1/2

A3/2 1 −1 1 −1 1 −1 M = ±3/2

(26)

with ε = ei
2π
3 .

The reduction of symmetry produced by the trigonal potential, symmetry-reduces the SU2 labels, eq. (25), to

C̄3 ones. These, according to the above table, must be:

Bloch | Envelope

A3/2 | A

E1/2 | E+

E−1/2 | E−

A3/2 | A


;



Bloch | Envelope

A3/2 | A

E1/2 | E+

E−1/2 | E−

A3/2 | A


(27)

9



From the above table, the irreps product table results:

A E+ E− E1/2 E−1/2 A3/2

A A E+ E− E1/2 E−1/2 A3/2

E+ E− A A3/2 E1/2 E−1/2

E− E+ E−1/2 A3/2 E1/2

E1/2 E+ A E−

E−1/2 E− E+

A3/2 A

(28)

The last table allow to check that the symmetry product fi ui in each row of any of the two HH ground state

eigenfunctions, eq. (27), is A3/2. This C̄3 label replaces the SU2 label Fz as the symmetry label of the complete

scalar wave-function of a hole.
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