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A brief outline on Berry phase, Chern number, curvature, topological Hamiltonians, etc. is given, as an attempt to
give some very basic hints to those students who start reading papers on the field.

1 Decalogue

1. The wave functions Ψ and Ψ′ = eiγ Ψ, with γ a constant, represent the same estate. We say that the Schrödinger
equation is invariant under a global change of phase in the real space (U(1) symmetry).

As any other symmetry, this one is related to an invariant (Noether’s theorem). In this case, the symmetry is
related to the norm or particle number conservation (appendix 1).

2. The Schrödinger equation of a charged particle in a magnetic field, Ĥ = 1
2m (p̂ − eA)2, where A is the vector

potential, is invariant under a local change of phase in the real space. Actually, if we proceed with the replacement
A → A′ = A +∇γ, with γ(r), then Ψ′ = Ψ eiγ(r) is eigenfunction of the Schrödinger equation and corresponds
to the same eigenvalue as Ψ, i.e., represent the same state.

It is worth saying that the physically observable magnetic field, B = ∇ × A, is invariant under the change
A→ A+∇γ since ∇×∇γ = 0. Then, neither the state of the system changes.

3. The wave function of particle in a crystalline lattice with translational symmetry, has the form of a Bloch wave
Ψnk(r) = unk(r) eikr, the Bloch waves being invariant under a local change of the phase in the reciprocal or
momentum space (see appendix 2).

Can we define in this case the analog of vector potential? Yes, we can.

4. Let’s consider a Hamiltonian operator Ĥ depending on a set of parameters, as e.g. the molecular electronic
Hamiltonian which is a function of the nuclear coordinates. If the system undergo an adiabatic change from
some time t = 0 up to t = T , following a path in the parameter space which returns to the starting point, also the
system returns to the initial state. However, this initial state, reached after completing the route, is described
by a function ΨT that may differ from Ψ0 by a phase factor γ(C), this phase factor being dependent on the
followed path C. The phase factor γ(C) can be determined from the Schrödinger equation ih̄Ψ̇ = ĤΨ. Namely,
should we call |unR(r)〉 to the n-th eigenvalue of the Hamiltonian ĤR(r), this phase, called Berry’s phase, turns
out to be (appendix 3):

γ(C) =

˛
C

i 〈unR(r)|∇RunR(r)〉 · dR =

˛
C

An · dR, (1)

An being referred to as Berry’s connexion and represents the vector potential analog.

5. The Stokes theorem allows to transforms the above line-integral into a surface-integral:

γ(C) =

¨
S

∇×An · dS (2)
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and, then, to define the analog of the magnetic field, Fn = ∇ × An, called Berry’s curvature, which, like the
magnetic field, has full physical meaning.

6. The non-existence of magnetic monopoles entails a null divergence of the magnetic field, ∇B = 0, which implies,
in turn, that the net magnetic flux through a closed surface (surface without edges, like a sphere or a torus) is
zero. A magnetic monopole would generate a magnetic field B = qm

r
r3 . This field can be related to the vector

potential A = qm
(y,−x,0)
r(r−z) (it can be straightforwardly checked by replacement of the above A in ∇A = B). This

magnetic field has a non-zero net flux through a closed surface (provided the monopole being located inside the
closed surface).

The above vector potential A has a singularity at z = r. The same field B can be also derived from the

potential vector A′ = qm
(−y,x,0)
r(r+z) , which presents no singularity at z = r. But it is singular at z = −r. Both

potential vectors are related by a gauge transformation: A − A′ = 2qm∇ϕ, ϕ = arctan y
x . The presence of this

gauge-symmetry leads to the quantization of the magnetic charge (appendix 4).

It is worth to emphasize that no matter the gauge we may use, the vector potential of a monopole magnetic field
will have at least a singularity (the absence of singularities will yield zero flux, see appendix 5).

7. In a similar way, the integral on a closed surface of the Berry’s connexion An is zero, unless it has a singularity.

Let us realize that due to the way the Berry connection has been defined, An = i 〈unR(r)|∇RunR(r)〉, it results
ill-defined in the presence of energy degeneration (since it has been defined for a given state n, and in case of
degeneration of the states n and m, any linear combination of them is valid to describe the dynamic state of the
system, then, the connexion becomes undetermined as soon as degeneration is reached). The presence of degen-
eration in the parameter space R yields a singular connexion (as an example we may mention the Jahn-Teller
conic intersection).

In solid state, the Bloch waves phase factor γ(k) arises in the reciprocal or momentum space. In this case, the
effective Hamiltonian acting on the Bloch functions is Ĥ(k) = eikrĤe−ikr, where Ĥ is the Hamiltonian acting
on the complete wave function (envelope × Bloch). The Berry’s connexion and phase can then be derived as:

An = i 〈unk(r)|∇k unk(r)〉 ; γ(k) =

˛
C

An · dk (3)

8. As an extension of the above item, let’s consider the simple case of two bands that may have a degeneration
associated to a given k value in a two-dimensional Brillouin zone (corresponding to a 2D lattice, e.g. graphene)
and an associated 2 × 2 Hamiltonian depending on three parameters X,Y,Z (we may consider them as the
components of some 3D vector R)[1]:

Ĥ(R) =

[
Z X − i Y

X + i Y −Z

]
= R · σ̂ (4)

where σ̂(σx, σy, σz) are the Pauli matrices. The eigenvalues of this Hamiltonian can easily be calculated to be
E± = ±|R|. Please, note that degeneracy arises for R = 0. The Berry’s curvature Fn = ∇R×An can be written
(appendix 6):

Fn = Im
∑
n6=m

〈unk(r)|∇R(Ĥ)|umk(r)〉 × 〈umk(r)|∇R(Ĥ)|unk(r)〉
(Em − En)2

(5)

In this case, ∇R(Ĥ(R)) = σ̂.

We may select the axes system so that z points in the R direction and then calculate the integrals (integrals
are invariant under axes rotation). Then, Ĥ is diagonal and the eigenvalues turn into |+〉 = (1, 0), |−〉 = (0, 1),
so that acting the Pauli matrices on these eigenvectors we find: σz|±〉 = ±|±〉, σx|±〉 = |∓〉, σy|±〉 = ±i |∓〉.
Then, after a short algebra (appendix 7) we find out: (Fn)x = (Fn)y = 0, and:

(Fn)z =
Im〈+|σx|−〉〈−|σy|+〉

4R2
=

1

2

1

R2
(6)

Let’s now recover the original axes orientation: (Fn)z = 1
2

R
R3 . Therefore,
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γn =

¨
Fn · dS =

ˆ π

0

ˆ 2π

0

R

2R3
R2 sin θ dθ dφ = 2π (7)

that represents the flux of a 1/2 magnetic charge through a R-radius sphere. Therefore, Berry’s connexion has
a singularity (at the degeneracy). Note that the integration of the flux of the Berry’s curvature Fn on a close
surface is zero in case the associated connexion An is free of singularities.

9. The curvature K at a given point on a surface is the product of the two main curvatures κ1, κ2 (the smallest
and largest) at this point. For a R-radius sphere κ1 = κ2 = 1

R in every point. Then, K = κ1κ2 = 1
R2 , and the

integration over all surface results:

‹
K · dS =

ˆ π

0

ˆ 2π

0

1

R2
RdθR sin θ dφ = 4π = 2πχm (8)

where χm = 2. We should add here that χm is invariant under any deformation of the sphere (this is a general
topological property. We scape its proof that can be found in any book on mathematical topology). χm is related
to the genus g of the surface: χm = 2(1− g). The genus representing the number of holes the close surface has
(zero for a sphere, one for a torus, two for a double-torus, etc).

Incidentally, the 2D first Brillouin zone has the topology of a torus, since periodicity allows to identify opposite
edges of the unit lattice.

10. The Chern number C is the analog of χm. It is obtained by integration of Berry’s curvature on the whole Brillouin
zone. We recall here that the effective Hamiltonian acting on the Bloch functions is Ĥ(k) = eikrĤe−ikr, where Ĥ
is the Hamiltonian acting on the complete wave function (envolpe × Bloch). As Ĥ(k) depends parametrically on
k, we can define An(k) = i 〈unk(r)|∇kunk(r)〉 and Fn = ∇k ×An(k). The integration of Fn over the complete
first Brillouin zone can be non-zero only when An has some singularity (like the conical intersection of graphene
at the band degeneration). In such a case,

‹
Fn(k) · dk = 2πC (9)

where the Chern number C ∈ Z.

For the case of Haldane model[2] (a Hamiltonian for graphene with masses ±M including an imaginary tunneling
i t2 between second neighbors), the Hamiltonian yields a band structure where degeneracies at the K and K ′

points hold for different values of t2 = ± M
3
√

3
. When we carry out integration fixing t2 = M

3
√

3
, we find out‚

Fn(k) · dk = 2π, i.e., C = 1. In the graphene case (M = t2 = 0) there are degeneracies at K and K ′

simultaneously. However, these points have same absolute value of curvatures but opposite signs, thus yielding
C = 0 (appendix 8). This is the origin of the so-called graphene marginal topology[3].
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2 Appendixes

2.1 Appendix 1. Norm Conservation

Symmetry in an arbitrary translation x → x + a leads to momentum p̂ = −i∂x conservation. In a similar way,
we will show that the conservation of −i∂γ leads to conservation of the probability density. We have,

−i∂γΨ = −i Ψeiδγ −Ψ

δγ
= −i (1 + iδγ)Ψ−Ψ

δγ
= Ψ (10)

Then, 〈Ψ| − i∂γ |Ψ〉 = 〈Ψ|Ψ〉.

2.2 Appendix 2. Bloch waves invariance under a phase change in the k space

We apply the Hamiltonian operator on Ψ′ = Ψeiγ(k) = eikrunk(r)eiγ(k) to obtain:

ĤΨ′ =

[
− 1

2m
∇r + V (r)

]
Ψ′ = eiγ(k)ĤΨ = EnkΨ′

we see then that Ψ′ and Ψ represent the same state.

2.3 Appendix 3. The Berry’s phase

We write Ψn = e−iEnt/h̄eiγ(r,t)unR(r) and inject it onto the Schrödinger equation ih̄Ψ̇ = ĤΨ:

ih̄Ψ̇ = EnΨ− h̄γ̇Ψ + i h̄ e−iEnt/h̄eiγ(r,t)∇RunR(r)Ṙ (11)

ĤΨ = e−iEnt/h̄eiγ(r,t)ĤunR(r) = EnΨ (12)

Then, γ̇ = i e−iEnt/h̄eiγ(r,t)∇RunR(r)Ṙ

Left-multiplying by Ψ∗ and carrying out integration over r, we find that: γ̇ = i 〈unR(r)|∇R unR(r)〉Ṙ.

In other words,

γ(C) =

˛
C

i 〈unR(r)|∇R unR(r)〉 · dR (13)

2.4 Appendix 4. Magnetic charge quantization

Let’s consider the vector potential A′ = A+∇Λ, with Λ = 2qm arctan y
x . Should we use A′ instead of A, then, a

phase factor eiΛ arises multiplying the wave function we derive by using A. Since the tangent y/x corresponds
to an undefined angle α or α+nπ, with n ∈ Z (i.e., α and α+n2π correspond to the same point), then, ei 2qmnπ

must be unity for any n ∈ Z and, therefore, also qm ∈ Z.

2.5 Appendix 5. The vector potential of a magnetic monopole must have singu-
larities

Let’s consider an sphere with the monopole at its cen-
ter and name C to the equatorial line. Next, we com-
pute the magnetic flux through the north cap plus that
through the south cap.

‹
BdS =

¨
D1

BdS +

¨
D2

BdS

=

˛
C

Ad`+

˛
C

A(−d`) = 0 (14)
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The figure shows how in either integration the equator
C is travelved in the opposite direction.

The only way to have a net non-zero flux is that A had a singularity. Then, the vector potential in the equator

(where we carry out the circulation) is a multi-evaluated function: we can either use A = (−y,x,0)
r2 or A′ = (y,−x,0)

r2 .
As a consequence, we cannot actually use the vector potential to calculate the flux. We must employ the field
instead: ‹

BdS =

‹
qm

r

r3
dS =

ˆ π

0

ˆ 2π

0

qm sin θdθdφ = 4πqm 6= 0 (15)

2.6 Appendix 6. Deriving equation 5

Our starting point is: γn(C) =
¸
c
i 〈unR(r)|∇RunR(r)〉 · dR. By using Stokes theorem we may turn it into:

γn(C) =

¨
C

i∇R × 〈unR(r)|∇R unR(r)〉 · dS (16)

We should point out that 〈u|∇u〉 must be a pure imaginary number, due to the fact that 〈u|u〉 = 1 and therefore
∇〈u|u〉 = 0. Since 〈∇u|u〉 + 〈u|∇u〉 = (a + ib) + (a + ib)∗ = 2a, we have that a = 0 and then, 〈∇u|u〉 = ib.
Therefore, i 〈u|∇u〉 = −Im(〈u|∇u〉).
Next, we calculate:

∇× 〈u|∇u〉 =

 ~ı ~ ~k
∂x ∂y ∂z

〈u|∂xu〉 〈u|∂yu〉 〈u|∂zu〉

 (17)

For example, (∇× 〈u|∇u〉)x = 〈∂yu|∂zu〉 − 〈∂zu|∂yu〉.
Taking into account that: ~ı ~ ~k

〈∂xu| 〈∂yu| 〈∂zu|
|∂xu〉 |∂yu〉 |∂zu〉

 =~ı (〈∂yu|∂zu〉 − 〈∂zu|∂yu〉) + ~ (. . . ) + ~k (. . . ) (18)

we can finally write: ∇× 〈u|∇u〉 = 〈∇u| × |∇u〉.

Since
∑
v |v〉〈v| = 1 and 〈u|∇u〉 is a pure imaginary number, the product 〈∇u|u〉〈u|∇u〉 is real (it has not

imaginary component) and we can write:

γn(C) = −Im

¨
dS
∑
m 6=n

〈∇un|um〉 × 〈um|∇un〉, (19)

due to the fact that 〈∇u| × |∇u〉 =
∑
v〈∇u|v〉〈v| × ∇u〉 =

∑
v〈∇u|v〉 × 〈v|∇u〉. We exclude the term u = v as

it has not an imaginary component.

On the other hand, ∇Ĥ|u〉 = ∇(Ĥ)|u〉 + Ĥ|∇u〉. Then, 〈v|∇Ĥu〉 = Eu〈v|∇u〉 = 〈v|∇(Ĥ)|u〉 + Ev〈v|∇u〉 →
(Eu − Ev)〈v|∇u〉 = 〈v|∇(Ĥ)|u〉. Consequently,

γn(C) = −
¨

Vn(R) dS (20)

with

Vn(R) = Im
∑
m 6=n

〈un|∇R(Ĥ)|um〉〈um|∇R(Ĥ)|un〉
(En − Em)2

(21)
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2.7 Appendix 7

Let’s first pay attention to the cross product of complex vectors.
We are interest in the case v1 = 〈+|σ̂|−〉 = (1,−i, 0), v2 = 〈−|σ̂|+〉 = (1, i, 0) and (En −Em)2 = 4R2. We have:

v1 × v2 = [(1, 0, 0)− i (0, 1, 0)]× [(1, 0, 0) + i (0, 1, 0)]

= (1, 0, 0)× (1, 0, 0) + (0, 1, 0)× (0, 1, 0)− i (0, 1, 0)× (1, 0, 0) + i (1, 0, 0)× (0, 1, 0)

= 2 i (0, 0, 1) (22)

Then, (Fn)x = (Fn)y = 0, Im(Fn)z = 1
2

1
R2 .

2.8 Appendix 8: Zero flux over the graphene first Brillouin zone

The unit vectors of the graphene direct lattice are a1 = a(
√

3/2,−1/2), a2 = a(0, 1), with a the cell constant.
Then, those of the reciprocal lattice can be calculated to be b1 = (2π/a)(2/

√
3, 0) and b2 = (2π/a)(1/

√
3, 1).

In terms of these last vectors, the K and K ′ points have the following coordinates K = (2/3)(b1 + b2), K ′ =
(1/3)(b1 + b2).

Should we select the energy origin at k = 0, them, the graphene first neighbors Tight Binding Hamiltonian has
zero diagonal matrix elements H11 = H22 = 0. The extradiagonal ones read:

H12 = H∗21 =
∑
R

eik·R〈χ1|Ĥ|χ2R〉 = 〈χ1|Ĥ|χ2〉(1 + eik·a1 + e−ik·a2)

where call t to the integral 〈χ1|Ĥ|χ2〉.

In the surroundings of the K point we have:

eik·a1 = eiK·a1eiq·a1 ≈ e−i 2π/3(1 + iq · a1) = e−i 2π/3(1 + i qx
1

2
a+ i qya

√
3

2
)

The last replacement is made under the assumption of representing vector q on a specific Cartesian coordinate
system: since a1 and a2 are unit but non-orthogonal vectors, we choose axis x along the unit vector resulting
of the sum x̂ = a1 + a2 = (

√
3/2, 1/2). The y axis is selected along the vector resulting from the subtraction

a1−a2 = (
√

3/2,−3/2). This subtraction vector has not unity norm and then we normalize it: ŷ = (1/2,−
√

3/2).
Next, we write q = qxx̂+ qy ŷ.

In a similar way, we calculate eik·a2 , that allows to write H12 =
√

3at
2 (qx − i qy) = h̄ vF q−.

The same procedure yields H ′12 = −
√

3at
2 (qx + i qy) = −h̄ vF q+ in the K ′ surroundings.

Therefore, in the surroundings of K,

H = h̄vf

(
0 q−
q+ 0

)
= vf

(
0 k−
k+ 0

)
= vf k

(
0 e−iφ

eiφ 0

)
(23)

with eigenvectors v1 = 1√
2

(
e−iφ

1

)
, v2 = 1√

2

(
−e−iφ

1

)
.

In the surroundings of K ′ we have:

H ′ = −vf k
(

0 eiφ

e−iφ 0

)
(24)

with eigenvectors v′1 = 1√
2

(
eiφ

1

)
, v′2 = 1√

2

(
−eiφ

1

)
.

By using polar coordinates, ∇ = (∂k,
1
k∂φ), so that Berry’s connexion in the surroundings of K results: Ak =

−i 〈v1|∂k|v1〉 = 0, Aφ = − i
k 〈v1|∂φ|v1〉 = − 1

2k . In the K ′ surroundings we find out A′k = 0, A′φ = 1
2k .
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The respective curvatures F = ∇ × A = (∂kAφ − 1
k∂φAk) result F = 1

2k2 i F′ = − 1
2k2 . As a consequence,´

1BZ
Fdk = 0.

In the figure we show the curvature in the graphene reciprocal lattice unit cell (first Brillouin zone). We can see
that it only has an appreciable value around the points K, where it is positive ( 1

2k2 ), and K ′, where it is negative
(− 1

2k2 ).
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