Structures of Organic Compounds

In 1828 Wöhler excitedly reported to J. J. Berzelius, I must tell you that I can make urea without the use of kidneys, either man or dog. Ammonium cyanate is urea!

Organic compounds contain <u>carbon</u> and hydrogen or carbon and hydrogen in combination with a few other types of atoms, such as oxygen, nitrogen, and sulfur.

Carbon is singled out for special study because the ability of C atoms to form strong covalent bonds with one another allows them to join together into straight chains, branched chains and rings.

Methane CH₄

Functional Groups: Organic compounds typically contain elements in addition to carbon and hydrogen. These groupings of one or several atoms called *functional groups*

Class	Formula ^a	Example	Name of Example
Alkane	R—Н	$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$	Hexane
Alkene	_c=c(CH_2 = $CHCH_2CH_2CH_3$	1-Pentene
Alkyne	$-c \equiv c -$	$CH_3C \equiv CCH_2CH_2CH_2CH_2CH_3$	2-Octyne
Alcohol	R—OH	CH ₃ CH ₂ CH ₂ CH ₂ OH	1-Butanol
Alkyl halide	$R-X^b$	$\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}Br}$	1-Bromohexane
Ether	R—O—R'	CH ₃ —O—CH ₂ CH ₂ CH ₃	1-Methoxypropane (methyl propyl ether) ^c
Amine	R—NH ₂	CH ₃ CH ₂ CH ₂ —NH ₂	1-Aminopropane (propylamine) ^c
Aldehyde	R—C—H	СH ₃ CH ₂ CH ₂ C—H	Butanal (butyraldehyde) ^c
Ketone	R - C - R'	O CH ₃ CH ₂ CCH ₂ CH ₂ CH ₃	3-Hexanone (ethyl propyl ketone) ^c

Class	Formula ^a	Example	Name of Example
Carboxylic acid	о R—С—ОН	O CH₃CH₂CH₂C—OH	Butanoic acid (butyric acid) ^c
Ester	R - C - OR'	CH ₃ CH ₂ CH ₂ C—OCH ₃	Methyl butanoate (methyl butyrate) ^c
Amide	$R-C-NH_2$	CH ₃ CH ₂ CH ₂ C—NH ₂	Butanamide (butyramide)
Arene	Ar—H ^d	\sim	Ethylbenzene
Aryl halide	Ar—X ^b	—Br	Bromobenzene
Phenol	Ar—OH	СІ—ОН	4-Chlorophenol (p-chlorophenol) ^c

Aromatic Hydrocarbons

Aromatic hydrocarbons have ring structures with *conjugated* bonding system (a bonding scheme among the ring atoms that consists of alternating single and double bonds).

$$\begin{array}{c|c} H & H & H \\ \downarrow & \downarrow & \downarrow \\ H-C & C-H & H-C & C-H \\ \downarrow & \parallel & \downarrow & \downarrow \\ H-C & C-H & H-C & C-H \\ \downarrow & H & H \end{array}$$

Kinetic and thermodynamic control of the reactions

Thermodynamic control: the most stable product (C') is obtained.

Kinetic control: yields the product that comes up lower barriers (C).

Should we provide a lot of energy thermodynamic control is reached; otherwise we will have kinetic control.

Example: