Structures of Organic Compounds In 1828 Wöhler excitedly reported to J. J. Berzelius, I must tell you that I can make urea without the use of kidneys, either man or dog. Ammonium cyanate is urea! Organic compounds contain <u>carbon</u> and hydrogen or carbon and hydrogen in combination with a few other types of atoms, such as oxygen, nitrogen, and sulfur. Carbon is singled out for special study because the ability of C atoms to form strong covalent bonds with one another allows them to join together into straight chains, branched chains and rings. Methane CH₄ ## **Functional Groups:** Organic compounds typically contain elements in addition to carbon and hydrogen. These groupings of one or several atoms called *functional groups* | Class | Formula ^a | Example | Name of Example | |--------------|----------------------|---|---| | Alkane | R—Н | $\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}}$ | Hexane | | Alkene | _c=c(| CH_2 = $CHCH_2CH_2CH_3$ | 1-Pentene | | Alkyne | $-c \equiv c -$ | $CH_3C \equiv CCH_2CH_2CH_2CH_2CH_3$ | 2-Octyne | | Alcohol | R—OH | CH ₃ CH ₂ CH ₂ CH ₂ OH | 1-Butanol | | Alkyl halide | $R-X^b$ | $\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}Br}$ | 1-Bromohexane | | Ether | R—O—R' | CH ₃ —O—CH ₂ CH ₂ CH ₃ | 1-Methoxypropane (methyl propyl ether) ^c | | Amine | R—NH ₂ | CH ₃ CH ₂ CH ₂ —NH ₂ | 1-Aminopropane
(propylamine) ^c | | Aldehyde | R—C—H | СH ₃ CH ₂ CH ₂ C—H | Butanal (butyraldehyde) ^c | | Ketone | R - C - R' | O

CH ₃ CH ₂ CCH ₂ CH ₂ CH ₃ | 3-Hexanone
(ethyl propyl ketone) ^c | | Class | Formula ^a | Example | Name of Example | |-----------------|----------------------|---|--| | Carboxylic acid | о
R—С—ОН | O
CH₃CH₂CH₂C—OH | Butanoic acid
(butyric acid) ^c | | Ester | R - C - OR' | CH ₃ CH ₂ CH ₂ C—OCH ₃ | Methyl butanoate
(methyl butyrate) ^c | | Amide | $R-C-NH_2$ | CH ₃ CH ₂ CH ₂ C—NH ₂ | Butanamide (butyramide) | | Arene | Ar—H ^d | \sim | Ethylbenzene | | Aryl halide | Ar—X ^b | —Br | Bromobenzene | | Phenol | Ar—OH | СІ—ОН | 4-Chlorophenol
(p-chlorophenol) ^c | ## Aromatic Hydrocarbons **Aromatic hydrocarbons** have ring structures with *conjugated* bonding system (a bonding scheme among the ring atoms that consists of alternating single and double bonds). $$\begin{array}{c|c} H & H & H \\ \downarrow & \downarrow & \downarrow \\ H-C & C-H & H-C & C-H \\ \downarrow & \parallel & \downarrow & \downarrow \\ H-C & C-H & H-C & C-H \\ \downarrow & H & H \end{array}$$ ## Kinetic and thermodynamic control of the reactions **Thermodynamic control**: the most stable product (C') is obtained. **Kinetic control**: yields the product that comes up lower barriers (C). Should we provide a lot of energy thermodynamic control is reached; otherwise we will have kinetic control. Example: