

Homogeneous phase chemical reaction

$$\begin{array}{c|cccc}
A(g) + B(g) \leftrightarrow C(g) \\
i & P_A & P_B & - \\
eq & p_A - x & p_B - x & x
\end{array}$$

$$K = \frac{x}{(p_A - x)(p_B - x)}$$

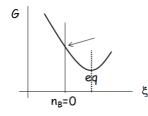
Assume p_A > p_B

Let
$$K \uparrow \begin{array}{c} x \rightarrow p_B \\ p_A \text{-} x \rightarrow p_A \text{-} p_B \end{array}$$

Then,
$$p_B - x \rightarrow \frac{p_B}{(p_A - p_B) K}$$

Always can reach equilibrium Never the reaction is 100% complete

Heterogeneous phase chemical reaction


$$K = \frac{x}{(p_A - x)}$$

Assume
$$n_B < p_A V/RT$$
 $n_B \text{ of } gas \rightarrow p_B$

Let
$$K \uparrow \begin{array}{c} x \rightarrow p_B \\ p_A - x \rightarrow p_A - p_B \end{array}$$

$$x \rightarrow p_B$$
 Then, $p_B - x \rightarrow K = \frac{p_B}{(p_A - p_B)}$

Different K for different n_B??

Need more B to reach equilibrium

Solubility and Solubility Product Constant K_{sp}

 $CaF_2(s) \xrightarrow{H_2O} Ca^{2+}(ac) + 2F^-(ac)$ dissolution:

precipitation: $Ca^{2+}(ac) + 2F^{-}(ac) \rightarrow CaF_{2}(s)$

$$CaF_2(s) \Leftrightarrow Ca^{2+}(ac) + 2F^{-}(ac)$$

pure solid, activity =1

Solubility product constant:

$$K_{ps} = \left[Ca^{2+}\right]\left[F^{-}\right]^{2}$$

Solubility

(or molar solubility), S, is the salt molar concentration in a saturated solution

Relationship Between Solubility and $K_{\rm sp}$

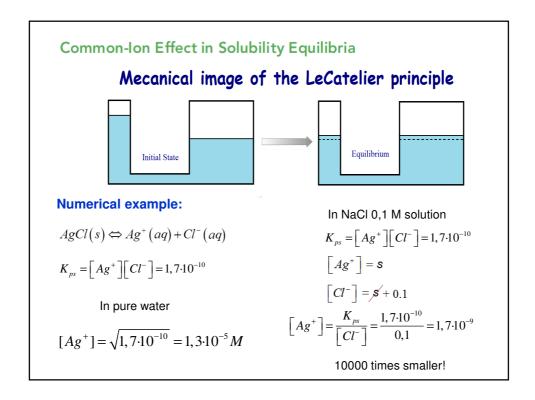
$$M_{m}X_{x}(s) \Leftrightarrow mM(ac) + xX(ac)$$

$$K_{ps} = \left[M\right]^m \left[X\right]^x$$

$$K_{ps} = (mS)^m (xS)^x = m^m x^x S^{m+x}$$
 $\Rightarrow S = \sqrt[m+x]{\frac{K_{ps}}{m^m x^x}}$

In general, we should not directly compare K_{ps} to estimate solubility ratios!

$$CuS(s)$$
 $K_{ns} = 8.5 \cdot 10^{-45}$


CuS(s)
$$K_{ps} = 8.5 \cdot 10^{-45}$$

 $Ag_2S(s)$ $K_{ps} = 1.6 \cdot 10^{-49}$

$$Bi_2S_3(s)$$
 $K_{ps} = 1,1\cdot10^{-73}$

Salt	K_{ps}	Solubility (mol/L)
CuS	8,5·10-45	9,2·10-23
Ag ₂ S	1,6·10-49	3,4·10-17
Bi_2S_3	1,1.10-73	1,0.10-15

solubility:
$$Bi_2S_3(s) > Ag_2S(s) > CuS(s)$$

$$K_{Ps}$$
: $Bi_2S_3(s) < Ag_2S(s) < CuS(s)$

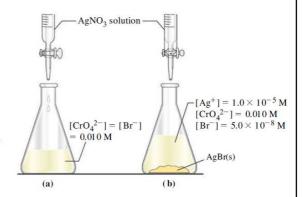
Equilibria Involving Complex Ions

$$K = \frac{\left[\left[Ag(NH_3)_2\right]^+\right]\left[CI^-\right]}{\left[NH_3\right]^2} = \frac{s \cdot s}{\left(0.100 - 2s\right)^2} = \left(\frac{s}{0.100 - 2s}\right)^2 = 2.9 \times 10^{-3}$$

 $s = 4.9 \times 10^{-3}$

... while in pure water: $s^2 = K_{Ps} \rightarrow s = 1.3 \cdot 10^{-5} \text{ M}$

By means of balances


$$K_{\rm f} = \frac{[[{\rm Ag}({\rm NH_3})_2]^+][{\rm Cl}^-]}{K_{\rm sp}~[{\rm NH_3}]^2} = \frac{s \cdot s}{(0.100 - 2s)^2} = \left(\frac{s}{0.100 - 2s}\right)^2 = 2.9 \times 10^{-3}$$

$$s = 4.9 \times 10^{-3}$$

... while in pure water: $s^2 = K_{Ps} \rightarrow s = 1.3 \cdot 10^{-5} \text{ M}$

Fractional Precipitation

- (a) $AgNO_3(aq)$ is slowly added to a solution that is 0.010~M in Br^- and 0.010~M in CrO_4^{2-} .
- (b) Essentially all the Br $^-$ has precipitated as pale yellow AgBr(s), [Br $^-$] in solution = 5.0×10^{-8} M. Red-brown Ag $_2$ CrO $_4$ (s) is just about to precipitate.

<u>Convention</u>: we say that the precipitation of an ion is complete when its concentration is reduced one thousand times.