Lewis Acids and Bases According to <u>Bronsted-Lowry:</u> acid is a proton donor $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$ base is a proton acceptor Base Acid Rewriting Bronsted-Lowry: acid is compound having protons. The proton can share a pair of electrons of a base base is compound having a pair of electrons willing to share them with a proton an acid-base reaction is the transfer of a proton **Lewis** claim: There are other acids than protons! ## According to **Lewis**: acid is compound having an atom willing to share a pair of electrons of a base base is compound having a pair of electrons willing to share them with an acid an acid-base reaction is the sharing of a pair of electrons Chelate: a class of complex compounds consisting of a central metal atom attached to a large molecule (ligand) in a cyclic or ring-like structure. $\begin{array}{c} -OOC - CH_2 \\ -OOC - CH_2 \end{array}$ $\begin{array}{c} -OH_2 - CH_2 - COO^- \\ -OOC - CH_2 \end{array}$ $\begin{array}{c} -CH_2 - COO^- \\ -CH_2 - COO^\end{array}$ | TABLE 18.2 | Formation Constants for Some Complex Ionsa | | |---|---|----------------------| | Complex Ion | Equilibrium Reaction ^b | K_{f} | | Co(NH ₃) ₆] ³⁺ | $Co^{3+} + 6 NH_3 \Longrightarrow [Co(NH_3)_6]^{3+}$ | 4.5×10^{33} | | Cu(NH ₃) ₄] ²⁺ | $Cu^{2+} + 4NH_3 \Longrightarrow [Cu(NH_3)_4]^{2+}$ | 1.1×10^{13} | | Fe(CN) ₆] ⁴⁻ | $Fe^{2+} + 6CN^{-} \Longrightarrow [Fe(CN)_6]^{4-}$ | 1×10^{37} | | Fe(CN) ₆] ³⁻ | $Fe^{3+} + 6CN^{-} \Longrightarrow [Fe(CN)_6]^{3-}$ | 1×10^{42} | | Pb(OH)3]- | $Pb^{2+} + 3OH^{-} \Longrightarrow [Pb(OH)_3]^{-}$ | 3.8×10^{14} | | PbCl ₃] | $Pb^{2+} + 3Cl^{-} \Longrightarrow [PbCl_3]^{-}$ | 2.4×10^{1} | | Ag(NH ₃) ₂] ⁺ | $Ag^+ + 2NH_3 \Longrightarrow [Ag(NH_3)_2]^+$ | 1.6×10^{7} | | Ag(CN)2] | $Ag^+ + 2CN^- \Longrightarrow [Ag(CN)_2]^-$ | 5.6×10^{18} | | $Ag(S_2O_3)_2]^{3-}$ | $Ag^{+} + 2S_{2}O_{3}^{2-} \Longrightarrow [Ag(S_{2}O_{3})_{2}]^{3-}$ | 1.7×10^{13} | | Zn(NH ₃) ₄] ²⁺ | $Zn^{2+} + 4NH_3 \Longrightarrow [Zn(NH_3)_4]^{2+}$ | 4.1×10^{8} | | $Zn(CN)_4]^{2-}$ | $Zn^{2+} + 4CN^{-} \Longrightarrow [Zn(CN)_4]^{2-}$ | 1×10^{18} | | Zn(OH) ₄] ²⁻ | $Zn^{2+} + 4OH^{-} \rightleftharpoons [Zn(OH)_4]^{2-}$ | 4.6×10^{17} | ## **Cumulative formation constants** $$\beta_{1} = K_{1} = \frac{\begin{bmatrix} ML \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} \qquad \beta_{2} = K_{1}K_{2} = \frac{\begin{bmatrix} ML \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} \cdot \frac{\begin{bmatrix} ML_{2} \end{bmatrix}}{\begin{bmatrix} ML \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} = \frac{\begin{bmatrix} ML_{2} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{2}}$$ $$\beta_{3} = K_{1}K_{2}K_{3} = \frac{\begin{bmatrix} ML_{3} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{3}} \qquad \beta_{n} = K_{1}K_{2}K_{3}...K_{n} = \frac{\begin{bmatrix} ML_{n} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}}$$ $$\begin{bmatrix} ML_{n} \end{bmatrix} = \beta_{n} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}$$ $$\begin{bmatrix} ML_{n} \end{bmatrix} = \beta_{n} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}$$ $$m = \begin{bmatrix} M \end{bmatrix} + \begin{bmatrix} ML \end{bmatrix} + \begin{bmatrix} ML_{2} \end{bmatrix} + ... + \begin{bmatrix} ML_{n} \end{bmatrix} = m(1 + \beta_{1}l + \beta_{2}l^{2} + \beta_{3}l^{3} + ... + \beta_{n}l^{n})$$ $$m = \frac{1}{1 + \beta_{1}l + \beta_{2}l^{2} + \beta_{3}l^{3} + ... + \beta_{n}l^{n}} c_{M}$$