Lewis Acids and Bases

According to <u>Bronsted-Lowry:</u> acid is a proton donor $NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$ base is a proton acceptor Base Acid

Rewriting Bronsted-Lowry: acid is compound having protons. The proton can share

a pair of electrons of a base

base is compound having a pair of electrons willing to

share them with a proton

an acid-base reaction is the transfer of a proton

Lewis claim: There are other acids than protons!

According to **Lewis**:

acid is compound having an atom willing to share a pair of electrons of a base base is compound having a pair of electrons willing to share them with an acid

an acid-base reaction is the sharing of a pair of electrons

Chelate: a class of complex compounds consisting of a central metal atom attached to a large molecule (ligand) in a cyclic or ring-like structure. $\begin{array}{c}
-OOC - CH_2 \\
-OOC - CH_2
\end{array}$ $\begin{array}{c}
-OH_2 - CH_2 - COO^- \\
-OOC - CH_2
\end{array}$ $\begin{array}{c}
-CH_2 - COO^- \\
-CH_2 - COO^\end{array}$

TABLE 18.2	Formation Constants for Some Complex Ionsa	
Complex Ion	Equilibrium Reaction ^b	K_{f}
Co(NH ₃) ₆] ³⁺	$Co^{3+} + 6 NH_3 \Longrightarrow [Co(NH_3)_6]^{3+}$	4.5×10^{33}
Cu(NH ₃) ₄] ²⁺	$Cu^{2+} + 4NH_3 \Longrightarrow [Cu(NH_3)_4]^{2+}$	1.1×10^{13}
Fe(CN) ₆] ⁴⁻	$Fe^{2+} + 6CN^{-} \Longrightarrow [Fe(CN)_6]^{4-}$	1×10^{37}
Fe(CN) ₆] ³⁻	$Fe^{3+} + 6CN^{-} \Longrightarrow [Fe(CN)_6]^{3-}$	1×10^{42}
Pb(OH)3]-	$Pb^{2+} + 3OH^{-} \Longrightarrow [Pb(OH)_3]^{-}$	3.8×10^{14}
PbCl ₃]	$Pb^{2+} + 3Cl^{-} \Longrightarrow [PbCl_3]^{-}$	2.4×10^{1}
Ag(NH ₃) ₂] ⁺	$Ag^+ + 2NH_3 \Longrightarrow [Ag(NH_3)_2]^+$	1.6×10^{7}
Ag(CN)2]	$Ag^+ + 2CN^- \Longrightarrow [Ag(CN)_2]^-$	5.6×10^{18}
$Ag(S_2O_3)_2]^{3-}$	$Ag^{+} + 2S_{2}O_{3}^{2-} \Longrightarrow [Ag(S_{2}O_{3})_{2}]^{3-}$	1.7×10^{13}
Zn(NH ₃) ₄] ²⁺	$Zn^{2+} + 4NH_3 \Longrightarrow [Zn(NH_3)_4]^{2+}$	4.1×10^{8}
$Zn(CN)_4]^{2-}$	$Zn^{2+} + 4CN^{-} \Longrightarrow [Zn(CN)_4]^{2-}$	1×10^{18}
Zn(OH) ₄] ²⁻	$Zn^{2+} + 4OH^{-} \rightleftharpoons [Zn(OH)_4]^{2-}$	4.6×10^{17}

Cumulative formation constants

$$\beta_{1} = K_{1} = \frac{\begin{bmatrix} ML \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} \qquad \beta_{2} = K_{1}K_{2} = \frac{\begin{bmatrix} ML \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} \cdot \frac{\begin{bmatrix} ML_{2} \end{bmatrix}}{\begin{bmatrix} ML \end{bmatrix} \begin{bmatrix} L \end{bmatrix}} = \frac{\begin{bmatrix} ML_{2} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{2}}$$

$$\beta_{3} = K_{1}K_{2}K_{3} = \frac{\begin{bmatrix} ML_{3} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{3}} \qquad \beta_{n} = K_{1}K_{2}K_{3}...K_{n} = \frac{\begin{bmatrix} ML_{n} \end{bmatrix}}{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}}$$

$$\begin{bmatrix} ML_{n} \end{bmatrix} = \beta_{n} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}$$

$$\begin{bmatrix} ML_{n} \end{bmatrix} = \beta_{n} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^{n}$$

$$m = \begin{bmatrix} M \end{bmatrix} + \begin{bmatrix} ML \end{bmatrix} + \begin{bmatrix} ML_{2} \end{bmatrix} + ... + \begin{bmatrix} ML_{n} \end{bmatrix} = m(1 + \beta_{1}l + \beta_{2}l^{2} + \beta_{3}l^{3} + ... + \beta_{n}l^{n})$$

$$m = \frac{1}{1 + \beta_{1}l + \beta_{2}l^{2} + \beta_{3}l^{3} + ... + \beta_{n}l^{n}} c_{M}$$