Prove this theorem: In one dimension there are no degenerate bound states.

Hint:

Suppose there are two solutions, y; and 2, with the same energy E. Multiply the
Schrédinger equation for yr; by 2, and the Schrédinger equation for ¥, by ¥,
and subtract, to show that (yndy/dx — Y1dya/dx) is a constant. Use the fact
that for normalizable solutions ¥ — 0 at + 00 to demonstrate that this constant is
in fact zero. Conclude that ¥ is a multiple of y/, and hence that the two solutions

are not distinct.
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Since this is zero, it follows that ®2—— — ¥1—— = K (a constant).
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But 9y — 0 at ~ so the constant must be zero. Thus %2—— =¥1——, or _——1 = —%2,
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so In#y = Intg 4+ constant, or ¥»; = (constant),.



