for every function, $f \in C^{\infty}(M)$, the Laplacian, Δf , is given by

$$\Delta f = \frac{1}{\sqrt{|g|}} \sum_{i,j} \frac{\partial}{\partial x_i} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x_j} \right).$$

for $M = \mathbb{R}^n$ with its standard coordinates, the Laplacian is given

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}.$$

Laplacian in spherical coordinates.

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix} \qquad (g^{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^{-2} & 0 \\ 0 & 0 & r^{-2} \sin^{-2} \theta \end{pmatrix}$$

$$\sqrt{|g|} = r^2 \sin \theta$$

$$\Delta f = \frac{1}{r^2 \sin \theta} \left(\frac{\partial}{\partial r} \frac{\partial}{\partial \theta} \frac{\partial}{\partial \varphi} \right) r^2 \sin \theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^{-2} & 0 \\ 0 & 0 & r^{-2} \sin^{-2} \theta \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \\ \frac{\partial}{\partial \varphi} \end{pmatrix}$$

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}.$$

the metric, (\widetilde{g}_{ij}) , on S^2 is given by the matrix

$$(\widetilde{g}_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}, \qquad (\widetilde{g}^{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & \sin^{-2} \theta \end{pmatrix}.$$

$$\Delta_{S^2} f = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2},$$

it has been shown that there is an effective potential induced by the curvature of the surface.

$$V_S(q_1, q_2) = -\frac{\hbar^2}{2m}(M^2 - K) = -\frac{\hbar^2}{8m}(k_1 - k_2)^2$$

where k_1 and k_2 are the principal curvatures of the surface S and

$$M = \frac{1}{2}(k_1 + k_2)$$
 (mean curvature)

$$K = k_1 k_2$$
 (Gaussian curvature)

(da Costa R C T 1981 Quantum mechanics of a constrained particle Phys. Rev. A 23 1982-7)

This effective potential arises from the separation of variables of the Schrödinger equation formulated for the surface in question using a coordinate system with two coordinates tangential to the surface and one coordinate normal to it. When the normal coordinate is separated from the equation, the effective potential V_S remains.

in spherical coordinates
$$k_1 = k_2$$
 \longrightarrow $V_S(q_1, q_2) = 0$ (not in general)